Second quantization

Goals for the lecture:

I. Introduce quantization of EM fields \(\Rightarrow\) photon

II. "second quantization" - jargon from QFT
 - different approach than "first quantization"
 * we studied so far:
 observables \(\leftrightarrow\) operators
 states \(\leftrightarrow\) functions
 * when dealing with (fermions) bosons:
 impose (anti)symmetry of states "by hand"

 - second quantization formulation of Q.M.
 * states themselves expressed in terms of
 "creation" and "annihilation" operators
 working on the "vacuum state"
 * other operators (e.g. Hamiltonian) also
 described by creation/annihilation operators
 * proper (anti)symmetry of states enforced
 via the algebra of these operators

Simple harmonic oscillator (revisited)

\[\hat{\mathcal{H}} |\psi\rangle = E |\psi\rangle \quad \text{with} \quad \hat{\mathcal{H}} = \frac{\hat{p}_x^2}{2m} + \frac{m\omega^2}{2} \hat{x}^2 \]

Rewrite:

\[\hat{\mathcal{H}} = \frac{m\omega^2}{2} \left(\frac{\hat{p}_x^2}{m\omega^2} + \hat{x}^2 \right) \]

E.g. any 2 operators: \(\hat{\alpha}, \hat{\beta}\)

\[(\hat{\alpha} + i\hat{\beta})(\hat{\alpha} - i\hat{\beta}) = \hat{\alpha}^2 + i(\hat{\beta}\hat{\alpha} - \hat{\alpha}\hat{\beta}) + \hat{\beta}^2 \]

\[\Rightarrow \hat{\alpha}^2 + \hat{\beta}^2 = (\hat{\alpha} + i\hat{\beta})(\hat{\alpha} - i\hat{\beta}) + i[\hat{\alpha}, \hat{\beta}] \]

Define:

\[\hat{\alpha} = \left(\frac{m\omega}{2\hbar} \right)^{1/2} \left(\hat{x} + \frac{i\hat{p}_x}{m\omega} \right) \quad \text{"lowering operator"} \]

\[\hat{\alpha}^+ = \left(\frac{m\omega}{2\hbar} \right)^{1/2} \left(\hat{x} - \frac{i\hat{p}_x}{m\omega} \right) \quad \text{"raising operator"} \]

\[(\hat{\alpha})^+ = \hat{\alpha}^+ \quad \text{adjoint of one another} \quad \text{self-adjoint} \]

(\text{but not Hermitian, i.e. } \hat{\alpha} \neq \hat{\alpha}^+) \]

Can rewrite (Hermitian) operators in terms of \(\hat{\alpha}, \hat{\alpha}^+\)

\[\hat{x} = \left(\frac{\hbar}{2m\omega} \right)^{1/2} (\hat{\alpha}^+ + \hat{\alpha}) \]

\[\hat{p}_x = i \left(\frac{\hbar m\omega}{2} \right)^{1/2} (\hat{\alpha}^+ - \hat{\alpha}) \]
Easy to show:
\[
[a, a^+] = a a^+ - a^+ a = 1 \\
[a, a] = -1 \\
[a, a] = 0 \\
[a^+, a^+] = 0
\]

E.g. \[
\hat{\mathcal{H}} = \frac{\hbar \omega}{2} (a a^+ + a^+ a)
\]
\[
= \frac{\hbar \omega}{2} ([a, a^+] + 2 a^+ a)
\]
\[
= \hbar \omega (a^+ a + \frac{1}{2})
\]

Since we know \[
\hat{\mathcal{H}} \ket{n} = E_n \ket{n} \] with \[
E_n = \hbar \omega (n + \frac{1}{2})
\]
\[\Rightarrow \quad a^+ a \ket{n} = n \ket{n}\]

\(\hat{n}\) - number operator

Raising & lowering operators' action

\[
\hat{a} (a^+ a) \ket{n} = n a \ket{n}
\]
\[
\hat{a} a^+ - a^+ a = [\hat{a}, a^+] = 1 \quad \Rightarrow \quad \hat{a} a^+ = 1 + a^+ a
\]
\[
(1 + a^+ a) \hat{a} \ket{n} = n a \hat{a} \ket{n}
\]
\[
\hat{a} \ket{n} = (n-1) \hat{a} \ket{n-1}
\]

\(\hat{n}\) - result of \(\hat{n}\) operator

\[\Rightarrow \quad \hat{a} \ket{n} = \sqrt{n} \ket{n-1}\] - lowering operator

Similarly,

\[\hat{a}^+ \ket{n} = B_n \ket{n+1}\] - raising operator

Can find coefficients \(A_n, B_n\) (see Griffiths 2.3)

\[\hat{a} \ket{n} = \sqrt{n} \ket{n-1}\]
\[\hat{a}^+ \ket{n} = \sqrt{n+1} \ket{n+1}\]

E.g. ground state \[\ket{0}\]:

\[\hat{a} \ket{0} = 0 \] (can use to find \(\Psi_0(x) = \langle x | 0 \rangle\))
\[\hat{a}^+ \ket{0} = 1 \ket{1}\]
Alternative interpretation: state \(|n\rangle \) contains \(n \) identical quanta, each with energy \(\hbar \omega \):
\[
E_n = \frac{n \hbar \omega}{2} + n \hbar \omega
\]
These quanta behave like identical bosons:
\(\hat{a}^\dagger \) creator \(\hbar \omega \) = creation operator
\(\hat{a} \) destroys \(\hbar \omega \) = annihilation operator

Quantization of EM fields

Hamiltonian equations:
\[
\begin{align*}
\frac{\partial p}{\partial t} &= -\frac{\partial H}{\partial q} \\
\frac{\partial q}{\partial t} &= \frac{\partial H}{\partial p}
\end{align*}
\]
describes time evolution of generalized momentum \(p \) and position \(q \)

E.g. classical
\[
H = \frac{p^2}{2m} + V(q)
\]
\[
\begin{align*}
\frac{\partial p}{\partial t} &= -\frac{\partial H}{\partial q} \\
\frac{\partial q}{\partial t} &= \frac{\partial H}{\partial p}
\end{align*}
\]
\[
\Rightarrow \begin{align*}
\frac{dp}{dt} &= -\frac{\partial V}{\partial q} = -F \\
\frac{dq}{dt} &= \frac{p}{m}
\end{align*}
\] Newton's 2nd law

1) Find quantities similar to \(p \) and \(q \) for EM field, Hamiltonian eqns give classical time evolution of \(p \) and \(q \)
2) Proceed to quantization of \(\hat{H} \) \((\hat{q} \rightarrow \hat{q}, \hat{p} \rightarrow i\hbar \frac{\partial}{\partial q}) \)

E.g. standing EM wave
\(E \) polarized along \(z \)-dir

\[
\begin{align*}
E_z &= A(t) \sin kx \\
B_y &= A(t) \cos kx
\end{align*}
\]
node \hspace{1cm} antinode

Check against Maxwell eqns:
\[
\begin{align*}
\nabla \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \\
\nabla \times \vec{B} &= \mu_0 \frac{\partial \vec{E}}{\partial t}
\end{align*}
\]
\[
\begin{align*}
y \text{-comp: } &\frac{\partial E_y}{\partial y} - \frac{\partial E_z}{\partial z} = -\frac{\partial B_y}{\partial t} \\
z \text{-comp: } &\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} = \mu_0 \frac{\partial E_z}{\partial t}
\end{align*}
\]
\[
\begin{align*}
\Rightarrow &\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} = \mu_0 \frac{\partial E_z}{\partial t} \\
kp \cos kx &= \frac{\partial^2}{\partial t^2} \cos kx \\
\Rightarrow &\frac{\partial^2}{\partial t^2} = \omega p \\
-kq \frac{\partial}{\partial t} \sin kx &= \frac{\partial^2}{\partial t^2} \sin kx \\
\Rightarrow &\frac{\partial^2}{\partial t^2} = -\omega q
\end{align*}
\]
\((\omega = kc \text{ and } \epsilon_0 \mu_0 = \frac{1}{c^2}) \)
Combining the two:
\[
\frac{d^2q}{dt^2} + \omega^2 q = 0 \quad \text{\{same as SHO!\}}
\]

Hamiltonian for the standing EM wave:
\[
H = \frac{\omega}{2} (p^2 + q^2) \quad \text{if } D = \sqrt{\frac{2\mu}{\varepsilon_0}}
\]

Going quantum:
\[
\hat{H} = \frac{\omega}{2} (\hat{p}^2 + \hat{q}^2)
\]

Rewrite in terms of creation/annihilation operators
\[
\hat{a} = \frac{1}{\sqrt{2\hbar}} \left(\hat{q} + i\hat{p} \right) \quad \hat{a}^+ = \frac{1}{\sqrt{2\hbar}} \left(\hat{q} - i\hat{p} \right)
\]

\[
\Rightarrow \quad \hat{H} = \hbar \omega \left(\hat{a}^+ \hat{a} + \frac{1}{2} \right)
\]

Extend to many modes: \(\hat{a} \rightarrow \hat{a}_\lambda \), \(\hbar \omega \rightarrow \hbar \omega_\lambda \)

\[
\hat{H}_\lambda = \hbar \omega_\lambda \left(\hat{a}_\lambda^+ \hat{a}_\lambda + \frac{1}{2} \right)
\]

Same properties of \(\hat{a}_\lambda^+, \hat{a}_\lambda \): \([\hat{a}_\lambda, \hat{a}_\lambda^+] = 1\)

\[
\hat{a}_\lambda^+ |n_\lambda\rangle = \sqrt{n_\lambda + 1} |n_\lambda + 1\rangle \quad \text{create } \hbar \omega_\lambda \text{ photon}
\]

\[
\hat{a}_\lambda |n_\lambda\rangle = \sqrt{n_\lambda} |n_\lambda - 1\rangle \quad \text{destroy } \hbar \omega_\lambda \text{ photon}
\]

Physics of what's going on

* Quantized EM field
 * energy / single quantum, \(\hbar \omega_\lambda \) is "photon"
* Can put as many photons into \(\lambda \)-mode as desired ⇒ bosons
* Zero-point fluctuations (E, B \(\propto |\lambda\rangle \) fluctuates)
 * Energy of vacuum
* Can quantize other waves: vibrations in solids ⇒ phonon
 plasma waves ⇒ plasmon, \(\sigma \rightarrow \text{waves} \Rightarrow \text{magnon} \)...

Casimir effect:

Attractive force due to zero-point

\[
\text{force} = -\frac{\hbar c n_{\lambda=2}}{24 \alpha^4} \quad \text{(Casimir)}
\]

E.g. \(1 \mu m \) separation for \(1 \times 1 m^2 \)

plates ⇒ force \(1.3 \times 10^{-3} N \)

Perturbs zero-point modes excluding \(\lambda > \alpha \) wavelengths from between the plates
Fermion creation & annihilation operators

recall: fermion wavefun antisymmetric w.r.t.
particle exchange

\[|1_{2};a,b\rangle = \frac{1}{\sqrt{2}} \left(|1_{1},a\rangle |2_{b}\rangle - |1_{1},b\rangle |2_{a}\rangle \right) \]

rewrite

\[|1_{2};a,b\rangle = \frac{1}{\sqrt{2}} \begin{vmatrix} 1_{1},a\rangle & 1_{2},a\rangle \\ 1_{1},b\rangle & 1_{2},b\rangle \end{vmatrix} \]

Slater's determinant

Easy to extend to \(N \) identical fermions

\[|N_{;a,b,\ldots,n}\rangle = \frac{1}{\sqrt{N!}} \begin{vmatrix} 1_{1},a\rangle & 1_{2},a\rangle & \cdots & 1_{N},a\rangle \\ 1_{1},b\rangle & 1_{2},b\rangle & \cdots & 1_{N},b\rangle \\ \vdots & \vdots & \ddots & \vdots \\ 1_{1},n\rangle & 1_{2},n\rangle & \cdots & 1_{N},n\rangle \end{vmatrix} \]

- exchange any two particles (columns)
 \(\Rightarrow \) eigenfun changes sign =antisymmetric
- if any two signle-pair. states the same (rows)
 \(\Rightarrow \) eigenfun goes to zero = Pauli principle

Can characterize multiparticle state:

\[|m_{1},m_{2},\ldots,m_{n}\rangle = \text{Fock representation} \]

occupation of state \(a \), e.g. 0 or 1 for fermion

Creation operator for fermions: \(\hat{b}_{m}^{\dagger} \)
Annihilation: \(\hat{b}_{m} \)

Their action:

\[\hat{b}_{m} |m_{1},\ldots,m_{n-1},m_{n}\rangle = (-1)^{m_{n}} |m_{1},\ldots,m_{n-1},m_{n}-1\rangle \]

add row with \(m \)th state in Slater determinant, interchange rows
for standard form \(\Rightarrow (-1) \) for each interchange

Ex.

\[\hat{b}_{m}^{\dagger} |1_{1},e\rangle |1_{2},e\rangle = \frac{1}{\sqrt{2}} \begin{vmatrix} 1_{1},e\rangle & 1_{2},e\rangle & 1_{3},e\rangle \\ 1_{1},h\rangle & 1_{2},h\rangle & 1_{3},h\rangle \\ 1_{1},m\rangle & 1_{2},m\rangle & 1_{3},m\rangle \end{vmatrix} \]

\(\Rightarrow \) swap
\[\hat{b}_m^+ | \mu_a ... \mu_m=1 ... \mu_n > = 0 \]

Similarly:

\[\hat{b}_m | \mu_a ... \mu_m=1 ... \mu_n > = (-1)^{\sum_{i=1}^{\mu_m} \mu_i} | \mu_a ... \mu_m=0 ... \mu_n > \]

\[\hat{b}_m | \mu_a ... \mu_m=0 ... \mu_n > = 0 \]

Can prove that: \[\{ \hat{b}_m, \hat{b}_n^+ \} = \{ \hat{b}_m^+, \hat{b}_n \} = 1 \quad \text{anticommutator for fermions} \]

What's next?

* can write operators \(\hat{A} \), etc. (including \(\hat{\psi} \)) in form of creation/annihilation operators

* can mix fermions with bosons (i.e. photon emission by an electron, electron-positron pair production, \(\Rightarrow \) QFT)

* math keeps track of proper state (anti)symmetry