PHYS 3317 Fall 2012

Exercises on Elementary Particles—Solutions

1. Forbidden reactions

- (a) $p + \bar{p} \rightarrow \mu^+ + e^-$: This reaction is forbidden by conservation of electron and muon family numbers.
- (b) $\pi^- + p \to p + \pi^+$: This reaction is forbidden by conservation of electric charge.
- (c) $p + p \rightarrow p + \pi^+$: This reaction is forbidden by conservation of quark number.
- (d) $p+p \rightarrow p+p+n$: This reaction is forbidden by conservation of quark number.
- (e) $\gamma + p \rightarrow n + \pi^0$: This reaction is forbidden by conservation of electric charge.

2. Energy threshold for reactions

(a) For the reaction $p + p \rightarrow n + \Sigma^{+} + K^{0} + \pi^{+}$, we have

$$KE_{th} = \frac{(m_n + m_{\Sigma^+} + m_{K^0} + m_{\pi^+})^2 c^2 - (2m_p)^2 c^2}{2m_p}.$$

Plugging in the numbers for the masses gives

$$KE_{th} = \frac{(939.6 + 1189.4 + 497.7 + 139.6)^2 - (2 \times 938.3)^2}{2 \times 938.3} \text{ MeV} = 2201 \text{ MeV}.$$

(b) For the reaction $\pi^- + p \to \Sigma^0 + K^0$, we have,

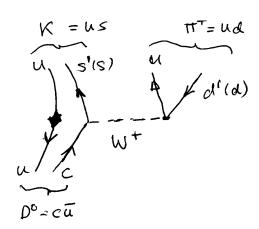
KE_{th} =
$$\frac{(m_{\Sigma^0} + m_{K^0})^2 c^2 - (m_p + m_{\pi^-})^2 c^2}{2m_p}$$
.

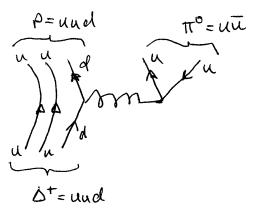
Plugging in the numbers for the masses gives

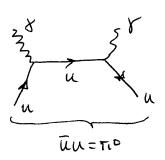
$$KE_{th} = \frac{(1192.5 + 497.7)^2 - (139.6 + 938.3)^2}{2 \times 938.3}$$
 MeV = 903 MeV.

3. Is it possible?

- (a) $\mu^- \to e^- + \gamma$: Impossible: conservation of electron and muon family numbers.
- (b) $p + p \rightarrow \pi^+ + \pi^0$: Impossible: conservation of electric charge.
- (c) $\Sigma^0 \to \Lambda^0 + \gamma$: Possible: electromagnetic interaction.


- (d) $\Sigma^0 \to \Lambda^0 + \pi^0$: Impossible: conservation of energy.
- (e) $\Sigma^- \to n + \pi^-$: Possible: weak interaction.
- (f) $e^- + e^+ \rightarrow \mu^- + \mu^+$: Possible: electromagnetic or weak interaction.
- (g) $\mu^- \to e^- + \bar{\nu}_e$: Impossible: conservation of muon family number.
- (h) $\Delta^+ \to p + \pi^0$: Possible: strong interaction.
- (i) $e^- + p \rightarrow \nu_e + \pi^0$: Impossible: conservation of quark number.
- (j) $p + p \rightarrow \Sigma^{+} + n + K^{0} + \pi^{+} + \pi^{0}$: Possible: strong interaction.
- (k) $p + p \rightarrow p + p + p + \bar{p}$: Possible: strong interaction.
- (1) $\pi^+ + n \to \pi^- + p$: Impossible: conservation of charge.
- (m) $B^0 \to \pi^- + p$: Impossible: conservation of quark number.
- (n) $J/\psi \to \pi^+ + \pi^- + \pi^0 + K^+ + K^-$: Possible: strong interaction.
- (o) $\Upsilon \to \tau^+ + \tau^-$: Possible: electromagnetic or weak interaction.
- (p) $\Upsilon \to \tau^+ + \bar{\nu}_{\tau}$: Impossible: conservation of electric charge.


4. Feynman diagrams


(a)
$$D^{\circ} \rightarrow K^{-} + \pi^{+}$$

 $c\bar{u} \rightarrow \bar{u} + u\bar{d}$

(e)
$$\pi^{\circ} \rightarrow 8+8$$

$$u\bar{u} \rightarrow 8+8$$

