Diffraction (contd.)

Ivan Bazarov
 Cornell Physics Department / CLASSE

Outline

- Fresnel vs. Fraunhofer diffraction
- Talbot effect
- Fresnel zones \& plates
- Fraunhofer diffraction
- 2D Fourier Transforms

Fresnel vs. Fraunhofer diffraction

Fresnel:
occurs when either S or P are close enough to the aperture that wavefront curvature is not negligible

Fraunhofer:
both incident and diffracted waves may be considered to be planar (i.e. both S and P are far from the aperture)

Fresnel vs. Fraunhofer criterion

$$
\frac{1}{2}\left(\frac{1}{p}+\frac{1}{q}\right) h^{2}>\lambda \quad \begin{gathered}
\text { near field } \equiv \\
\Delta>\lambda \\
\hline
\end{gathered}
$$

where d represents p or q (=distance from source or point to aperture)
A is aperture area

Fresnel number

Fraunhofer diffraction occurs when:

$$
F=\frac{h^{2}}{d \lambda} \ll 1
$$

Fresnel diffraction occurs when:

$$
F=\frac{h^{2}}{d \lambda} \geq 1
$$

where $\quad h=$ aperture or slit size
$\lambda=$ wavelength
$d=$ distance from the aperture $(p$ or q)

From Fresnel to Fraunhofer diffraction

Incident plane wave

$F \ll 1$

$$
F \gg 1
$$

$$
F \ll 1
$$

Fresnel diffraction from infinite array of slits:

 Talbot effect

- one of the few Fresnel diffraction problems that can be solved analytically
- beam pattern alternates between two different fringe patterns

Talbot "carpet"

Fresnel zones (180° phase difference)

Fresnel's approach to diffraction from circular aperatures

zone spacing $=\lambda / 2$:

$$
\begin{aligned}
& r_{1}=r_{0}+\lambda / 2 \\
& r_{2}=r_{0}+\lambda \\
& r_{3}=r_{0}+3 \lambda / 2
\end{aligned}
$$

$$
\vdots
$$

$$
r_{n}=r_{0}+n \lambda / 2
$$

these are called the
Fresnel zones
(note: all zones have equal areas)

Adding up light from the zones

as we draw a phasor diagram where each zone is subdivided into 15 subzones

- obliquity factor shortens successive phasors
- circles do not close, but spiral inwards
- amplitude $a_{1}=A_{1}$: resultant of subzones in $1^{\text {st }}$ half-period zone
- composite amplitude at \boldsymbol{P} from \boldsymbol{n} half-period zones:

$$
\begin{aligned}
& A_{n}=a_{1}+a_{2} e^{i \pi}+a_{3} e^{i 2 \pi}+a_{4} e^{i 3 \pi}+\ldots a_{n} e^{i(n-1) \pi} \\
& \quad A_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\ldots a_{n}
\end{aligned}
$$

Some interesting implications of Fresnel zones

A circular aperture is matched in size with the first Fresnel zone:
What is amplitude of the wavefront at P?

$$
A_{P}=a_{1}
$$

Now open the aperture wider to also admit zone 2:

$$
A_{P} \sim 0!
$$

Now remove aperture, allowing all zones to contribute:

$$
A_{P}=1 / 2 a_{1}!!!
$$

(To find intensity - square the amplitudes, i.e. it's only $1 / 4$ of the 1 st zone!)

Some interesting implications of Fresnel zones

Poisson/Arago spot

François Arago (1786-1853)

The Fresnel zone plate

16 zones

If the $2^{\text {nd }}, 4^{\text {th }}, 6^{\text {th }}$, etc. zones are blocked, then:

$$
A_{16}=a_{1}+a_{3}+a_{5}+a_{7}+a_{9}+a_{11}+a_{13}+a_{15}
$$

Amplitude at P is 16 times the amplitude of $a_{1} / 2$ Irradiance at P is (16) ${ }^{2}$ times! (a.k.a. focusing)

An alternative to blocking zones

Fresnel vs. plano-convex lens lens

phases of adjacent Fresnel zones changed by π

Fresnel lighthouse lens

other applications:
overhead projectors
automobile headlights
solar collectors traffic lights

Back to Fraunhofer diffraction

- Typical arrangement (or use laser as a source of plane waves)
- Plane waves in, plane waves out

Fraunhofer diffraction

$$
\begin{aligned}
& \begin{array}{c}
x \uparrow g_{\text {in }}(x, y) \\
z
\end{array} \\
& \text { Fresnel-Kirchhoff integral } \\
& \text { (free space propagation) } \\
& g_{\text {out }}\left(x^{\prime}, y^{\prime} ; z\right)=\frac{1}{i \lambda z} \exp \left\{i 2 \pi \frac{z}{\lambda}\right\} \iint g_{\text {in }}(x, y) \exp \left\{i \pi \frac{\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}}{\lambda z}\right\} \mathrm{d} x \mathrm{~d} y \\
& g_{\text {out }}\left(x^{\prime}, y^{\prime} ; z\right)=\frac{1}{i \lambda z} \exp \left\{i 2 \pi \frac{z}{\lambda}\right\} \iint g_{\text {in }}(x, y) \exp \left\{i \pi \frac{x^{\prime 2}+x^{2}-2 x x^{\prime}+y^{\prime 2}+y^{2}-2 y y^{\prime}}{\lambda z}\right\} \mathrm{d} x \mathrm{~d} y \\
& \begin{array}{r}
\underbrace{\exp \left\{i 2 \pi \frac{z}{\lambda}+i \pi \frac{x^{\prime 2}+y^{\prime 2}}{\lambda z}\right\}}_{|\ldots|=1} \iint g_{\text {in }}(x, y) \exp \left\{-i 2 \pi \frac{x x^{\prime}+y y^{\prime}}{\lambda z}\right\} \mathrm{d} x \mathrm{~d} y \\
u \equiv \frac{x^{\prime}}{\lambda z} \quad v \equiv \frac{y^{\prime}}{\lambda z}
\end{array} \\
& g_{\text {out }}\left(x^{\prime}, y^{\prime} ; z\right) \approx \exp \left\{i 2 \pi \frac{z}{\lambda}+i \pi \frac{x^{\prime 2}+y^{\prime 2}}{\lambda z}\right\} \iint g_{\text {in }}(x, y) \exp \{-i 2 \pi(u x+v y)\} \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

Fraunhofer diffraction \propto Fourier Transform: Rectangular aperture

$$
\begin{aligned}
& \underset{\substack{\text { Fourier } \\
\text { transform }} g_{\text {in }}(x, y)}{\longrightarrow \operatorname{rect}\left(\frac{x}{x_{0}}\right) \operatorname{rect}\left(\frac{y}{y_{0}}\right)} \\
& \longrightarrow G_{\mathrm{in}}(u, v)=x_{0} y_{0} \operatorname{sinc}\left(x_{0} u\right) \operatorname{sinc}\left(y_{0} v\right)
\end{aligned}
$$

$$
g_{\text {out }}\left(x^{\prime}, y^{\prime} ; z \rightarrow \infty\right) \quad \propto \quad \operatorname{sinc}\left(\frac{x_{0} x^{\prime}}{\lambda z}\right) \operatorname{sinc}\left(\frac{y_{0} y^{\prime}}{\lambda z}\right)
$$

Input field

Far-field

Circular aperature

$$
g_{\mathrm{in}}(x, y)=\operatorname{circ}\left(\frac{\sqrt{x^{2}+y^{2}}}{r_{0}}\right)
$$

$$
G_{\mathrm{in}}(u, v)=r_{0}^{2} \operatorname{jinc}\left(r_{0} \sqrt{u^{2}+v^{2}}\right)
$$

$$
\equiv r_{0} \frac{\mathrm{~J}_{1}\left(2 \pi \sqrt{u^{2}+v^{2}}\right)}{\sqrt{u^{2}+v^{2}}} g_{\text {out }}\left(x^{\prime}, y^{\prime} ; z \rightarrow \infty\right) \quad \propto \quad \operatorname{jinc}\left(\frac{2 \pi r_{0} \sqrt{x^{\prime 2}+y^{\prime 2}}}{\lambda z}\right)
$$

Far-field
Input field
Airy pattern

Fourier transform pair

$$
G(\nu)=\int_{-\infty}^{+\infty} g(t) \exp \{-i 2 \pi \nu t\} \mathrm{d} t
$$

1D

$$
g(t)=\int_{-\infty}^{+\infty} G(\nu) \exp \{i 2 \pi \nu t\} \mathrm{d} \nu .
$$

$G(u, v)=\iint_{-\infty}^{+\infty} g(x, y) \exp \{-i 2 \pi(u x+v y)\} \mathrm{d} x \mathrm{~d} y$.
2D

$$
g(x, y)=\iint_{-\infty}^{+\infty} G(u, v) \exp \{i 2 \pi(u x+v y)\} \mathrm{d} u \mathrm{~d} v
$$

Spatial domain \leftrightarrow (angular) frequency domain

Tilted grating

Linear superposition

$$
a_{1} \cos \left(2 \pi \frac{x}{\Lambda_{1}}\right)+a_{2} \cos \left(2 \pi \frac{x}{\Lambda_{2}}\right)
$$

$$
\begin{aligned}
& \frac{a_{1}}{2} \delta\left(u+\frac{1}{\Lambda_{1}}\right) \delta(v)+\frac{a_{2}}{2} \delta\left(u+\frac{1}{\Lambda_{2}}\right) \delta(v)+ \\
& \frac{a_{1}}{2} \delta\left(u-\frac{1}{\Lambda_{1}}\right) \delta(v)+\frac{a_{2}}{2} \delta\left(u-\frac{1}{\Lambda_{2}}\right) \delta(v)
\end{aligned}
$$

Space domain

Frequency
(Fourier) domain

Scaling

Shift theorem

Frequency (Fourier) domain

$$
\mathcal{F}\{g(x-a, y-b)\}=\exp \{i 2 \pi(a u+b v)\} G(u, v)
$$

The convolution theorem

multiplication
1×2

2
convolution

```
1'\otimes2'
```

$\mathcal{F}\{f * g\}=\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}$
or
$\mathcal{F}\{f \cdot g\}=\mathcal{F}\{f\} * \mathcal{F}\{g\}_{\stackrel{-1}{\text { FA2016 }}}$

Links/references

http://edu.tnw.utwente.nl/inlopt/overhead sheets/Herek2010/week7/13.Fr esnel\%20diffraction.ppt
http://ocw.mit.edu/courses/mechanical-engineering/2-71-optics-spring-2009/video-lectures/lecture-17-fraunhofer-diffraction-fourier-transforms-and-theorems/MIT2 71S09 lec17.pdf

