Polarization

Ivan Bazarov
 Cornell Physics Department / CLASSE

Outline

- Types of polarization
- Jones' matrices
- Birefringence
- Polarizing optical components
- Polarization in scattering

Polarization ellipse

For light traveling along z direction:

$$
\mathbf{k} \times \mathbf{E}=v \mathbf{B}
$$

$$
\mathcal{E}(z, t)=\operatorname{Re}\left\{\mathbf{A} \exp \left[j \omega\left(t-\frac{z}{c}\right)\right]\right\}
$$

with a complex amplitude:

$$
\begin{aligned}
& \mathbf{a}_{x} \exp \left(j \varphi_{x}\right) \\
& \mathbf{A}=A_{x} \widehat{\mathbf{x}}+A_{y} \widehat{\mathbf{y}}
\end{aligned} \mathrm{a}_{y} \exp \left(j \varphi_{y}\right)
$$

The electric field traces out an ellipse:

$$
\begin{gathered}
\mathcal{E}(z, t)=\mathcal{E}_{x} \widehat{\mathbf{x}}+\mathcal{E}_{y} \widehat{\mathbf{y}} \\
\mathcal{E}_{x}=a_{x} \cos \left[\omega\left(t-\frac{z}{c}\right)+\varphi_{x}\right] \\
\mathcal{E}_{y}=a_{y} \cos \left[\omega\left(t-\frac{z}{c}\right)+\varphi_{y}\right]
\end{gathered}
$$

Polarization ellipse

$$
\begin{gathered}
\frac{\varepsilon_{x}^{2}}{\mathrm{a}_{x}^{2}}+\frac{\mathcal{E}_{y}^{2}}{\mathrm{a}_{y}^{2}}-2 \cos \varphi \frac{\mathcal{E}_{x} \mathcal{E}_{y}}{\mathrm{a}_{x} \mathrm{a}_{y}}=\sin ^{2} \varphi \\
\tan 2 \psi=\frac{2 r}{1-\mathrm{r}^{2}} \cos \varphi, \quad r=\frac{a_{y}}{a_{x}} \\
\sin 2 \chi=\frac{2 r}{1+\mathrm{r}^{2}} \sin \varphi, \quad \varphi=\varphi_{y}-\varphi_{x}
\end{gathered}
$$

Polarization types:

- linearly polarized light
- circularly polarized light
- unpolarized light (non-laser)

Linear \& circular polarizations

linearly polarized light

(a)

circularly polarized light

Unpolarized light?

Unpolarized light means random (time-changing) polarization direction, e.g. excited atoms in a solid (a light bulb) emit randomly polarized light packets.

Jones vector

We can represent any monochromatic wave polarization as a Jones' vector:

$$
\mathbf{J}=\left[\begin{array}{l}
A_{x} \\
A_{y}
\end{array}\right]
$$

For normalized intensity $\left|A_{x}\right|^{2}+\left|A_{y}\right|^{2}=1$:

LP in x direction $\left[\begin{array}{l}1 \\ 0\end{array}\right]$	LP at angle θ

E.g. orthogonal polarizations whenever $\mathbf{J}_{\mathbf{1}}^{\prime} \cdot \mathbf{J}_{\mathbf{2}}=0$

Exercises

Ex1: Check that HLP and VLP are orthogonal as well as RCP and LCP.
Q: What does it mean?
A: can use either as a basis to represent arbitrary polarization!

Ex2: How to obtain the light intensity from its Jones vector (if in vacuum)?

$$
\mathbf{J}^{\prime} \cdot \mathbf{J}=\left[\begin{array}{ll}
A_{x}^{*} & A_{y}^{*}
\end{array}\right]\left[\begin{array}{c}
A_{x} \\
A_{y}
\end{array}\right]=\left|A_{x}\right|^{2}+\left|A_{y}\right|^{2}
$$

Jones matrix (don't work with unpolarized light!)

$\mathbf{J}_{2}=\mathbf{T} \mathbf{J}_{1}$

$$
\begin{aligned}
A_{2 x} & =T_{11} A_{1 x}+T_{12} A_{1 y} \\
A_{2 y} & =T_{21} A_{1 x}+T_{22} A_{1 y}, \\
{\left[\begin{array}{c}
A_{2 x} \\
A_{2 y}
\end{array}\right] } & =\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right]\left[\begin{array}{l}
A_{1 x} \\
A_{1 y}
\end{array}\right]
\end{aligned}
$$

Normal modes:

$$
\mathbf{T} \mathbf{J}=\mu \mathbf{J}
$$

Combining polarization devices \& tilt

Simply multiply the matrices in the reverse order:

If polarization device is rotated, use: $\mathbf{T}^{\prime}=\mathbf{R}(\theta) \mathbf{T}(-\theta)$

$$
\mathbf{R}(\theta)=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

$$
\text { Proof: } \quad \mathbf{J}_{2}^{\prime}=\mathbf{R}(\theta) \mathbf{J}_{2}=\mathbf{R}(\theta) \mathbf{T} \mathbf{J}_{1} .
$$

$$
\text { using } \mathbf{J}_{1}=\mathbf{R}(-\theta) \mathbf{J}_{1}^{\prime} \text {, we get }
$$

$$
\mathbf{J}_{2}^{\prime}=\underbrace{\mathbf{R}(\theta) \mathbf{T} \mathbf{R}(-\theta)}_{\mathbf{T}^{\prime}} \mathbf{J}_{1}^{\prime}
$$

Linear polarizer

Linear polarizer in x-direction

A polarizer rotated by angle θ

$$
\mathbf{T}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

$\mathbf{T}=\left[\begin{array}{cc}\cos ^{2} \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin ^{2} \theta\end{array}\right]$

Polarization retarders or wave plates

These devices do not affect one polarization component (fast axis) but add a retarding phase to the other component (slow axis).

If fast axis is along x-direction, then

$$
\mathbf{T}=[\begin{array}{cc}
1 & 0 \\
0 & e^{-j \Gamma}
\end{array} \underbrace{}_{\substack{y \text {-component gets 'retarded' } \\
\text { slow axis }}}
$$

Important cases of wave retarders:

- Quarter-wave retarder: $\Gamma=2 \pi / 4=\pi / 2$
- Half-wave retarder: $\Gamma=2 \pi / 2=\pi$

Quarter-wave plate \& half-wave plate

Quarter-Wave Retarder

Half-Wave Retarder

$$
T_{\pi / 2}=\left[\begin{array}{cc}
1 & 0 \\
0 & -j
\end{array}\right]
$$

$$
T_{\pi}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Exercises

What is the Jones matrix of a mirror?
What happens to HLP light upon reflection?
What happens to VLP light upon reflection?

What happens to RCP light upon reflection?
What happens to LCP light upon reflection?
Q: How is it different from the half-wave plate retarder?

Jones calculus example

Poor man's optical isolator:

Jones matrix: $\quad \mathbf{T}=\mathbf{T}_{\text {pol }, \mathrm{x}}\left(-45^{\circ}\right) \mathbf{T}_{\pi / 2} \mathbf{T}_{\text {mirror }} \mathbf{T}_{\pi / 2} \mathbf{T}_{\mathrm{pol}, \mathrm{x}}\left(45^{\circ}\right)$
$\mathbf{T}=\frac{1}{4}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & j\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & j\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

Birefringence

Spring model of a molecule:

different indexes of refraction depending on the polarization direction \rightarrow birefringence

When 'spring constants' are not the same, the material is said to be optically anisotropic (otherwise, it is said to be isotropic).

Uniaxial crystals

If the 'spring constants' $k_{1}=k_{2} \neq k_{3}$, index of refraction $n_{3}=n_{e}$ in k_{3} polarization direction (optical axis) is different (extraordinary wave) from $n_{1}=n_{2}=n_{o}$ in k_{1}, k_{2} directions (ordinary waves). Such materials are known as uniaxial crystals.

Refractive Index Ellipsoids

image taken from
calcite unit cell

If $k_{1} \neq k_{2} \neq k_{3}$, the crystal as said to be biaxial.

Retarders

Example: quarter-wave plate of calcite must have thickness
$d_{\pi / 2}=600 \mathrm{~nm} / 4 /\left(n_{o}-n_{e}\right)=0.87 \mu \mathrm{~m}$, and $d_{\pi / 2}=38 \mu \mathrm{~m}$ for ice.

Polarizing beam splitters

Simplest kind - use Brewster's angle: $\theta_{B}=\tan ^{-1}\left(n_{2} / n_{1}\right)$

MacNeille polarizing beamsplitter cube

Other types rely on splitting beam into ordinary and extraordinary waves:

(a) Wollaston prism

(b) Rochon prism

(c) Glan-Thompson prism

Rayleigh scattering

Recall that a driven electric dipole emits radiation (fully polarized!)

Electric field of light drives little dipoles (bound electrons) \rightarrow light is re-radiated or scattered (Rayleigh scattering).

Its most salient feature is that $I_{\text {scat. }} \propto 1 / \lambda^{4}$ (i.e. the blue light gets scattered much more than red, the reason behind blue skies)

Rayleigh scattering polarization

Scattered light is linearly polarized when viewed at 90° from the scatterers; \& partially polarized at other angles.

Rayleigh scattering from laser

Vertical Laser Polarization

Other scattering regimes:

- Rayleigh scattering is when scatterer size 《 wavelength
- When scattering particles ~ wavelength, it's called Mie scattering, which is a more general theory. Tyndall effect refers to being able to see the laser path in a colloidal solution.

Links/References

Most figures taken from Saleh \& Teich
Some figures from Wikipedia
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-007-electromagnetic-energy-from-motors-to-lasers-spring-2011/lecture-notes/MIT6 007S11 lec25.pdf

