Geometric optics

Ivan Bazarov
 Cornell Physics Department / CLASSE

Outline

- Eikonal equation
- Linear optics: ABCD matrices
- Non-linear optics: aberrations
- Depth of field, F\#
- Diffraction limit, NA, resolving power

Ekonal equation

Eikonal - (from gr. عiкต́v) scalar 'potential' S, whose gradient defines the direction of rays ('field lines'). E.g. compare to: $\vec{E}=-\nabla V$

Eikonal equation

$$
\nabla S(\vec{r})=n(\vec{r}) \hat{S}
$$

Mathematically equivalent to Fermat's principle!!

Difference between eikonal in points A and B gives optical path length:

$$
\mathcal{S}\left(\vec{r}_{B}\right)-\mathcal{S}\left(\vec{r}_{A}\right)=\int_{A}^{B}|\nabla \mathcal{S}| d s=\int_{A}^{B} n d s=\text { optical path length }
$$

Ray vector (paraxial approximation)

A light ray can be defined by two co-ordinates:
its position, x
its slope, θ

These parameters define a ray vector, which will change with distance and as the ray propagates through optics.

Linear optics

Since the displacements and angles are assumed to be small, we can think in terms of a linear combination with partial derivatives as coefficients (leading Taylor series expansion terms...)

$$
\begin{aligned}
& x_{o u t}=\frac{\partial x_{o u t}}{\partial x_{i n}} x_{i n}+\frac{\partial x_{o u t}}{\partial \theta_{\text {in }}} \boldsymbol{\theta}_{\text {in }} \\
& \boldsymbol{\theta}_{\text {out }}=\frac{\partial \theta_{\text {out }}}{\partial x_{\text {in }}} x_{i n}+\frac{\partial \theta_{\text {out }}}{\partial \theta_{\text {in }}} \theta_{\text {in }}
\end{aligned}
$$

We can write these equations in matrix form.

ABCD matrix

Thus, we can define 2×2 ray matrices for any element.
An element's effect on a ray is found by multiplying its ray vector.

Optical system $\leftrightarrow 2 \times 2$ Ray matrix

Ray matrices can describe simple and complex systems.

These matrices are often called ABCD Matrices.

Physical meaning of the matrix elements

$\mathrm{A}=$ "spatial magnification".
$B=$ "length to the object". B = 0 means that rays emitted at different angles end up at the same x offset (condition to form an image).
C = "focusing power" or negative inverse focal length. C = 0 means that parallel rays stay parallel (collimating optics).
D = "angular magnification".

Ray matrix for a free space or a medium

If $x_{i n}$ and $\theta_{i n}$ are the position and slope upon entering, let $x_{\text {out }}$ and $\theta_{\text {out }}$ be the position and slope after propagating from $z=0$ to L.

$$
\begin{aligned}
& x_{o u t}=x_{i n}+L \theta_{i n} \\
& \theta_{o u t}=\theta_{i n}
\end{aligned}
$$

Rewriting these expressions in matrix notation:

$$
\left[\begin{array}{c}
x_{\text {out }} \\
\theta_{\text {out }}
\end{array}\right]=\left[\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{\text {in }} \\
\theta_{\text {in }}
\end{array}\right]
$$

$$
O_{\text {space }}=\left[\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right]
$$

Ray matrix for a thin ideal lens

$$
\begin{aligned}
& x_{\text {out }}=x_{\text {in }} \\
& \theta_{\text {out }}=\theta_{\text {in }}+\frac{x_{\text {in }}}{-f}
\end{aligned}
$$

$$
O_{\text {lens }}=\left[\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right]
$$

The quantity, f, is the focal length of the lens. It's the single most important parameter of a lens. It can be positive or negative.

If $f>0$, the lens deflects rays toward the axis.

If $f<0$, the lens deflects rays away from the axis.
lens maker formula

$$
1 / f=(n-1)\left(1 / R_{1}-1 / R_{2}\right)
$$

Combining matrices of multiple elements (must include drifts!!)

As with Jones' matrices: multiply in the reverse order

Example 1: a lens focuses parallel rays to a point one focal length away

A lens followed by propagation by one focal length:
For all rays

$$
x_{\text {out }}=0!
$$

\downarrow

> Assume all input rays have $\theta_{i n}=0$ input position. to the z axis $\left(x_{\text {out }}=0\right)$ independent of

Parallel rays at a different angle focus at a different $x_{\text {out }}$.

Looking from right to left, rays diverging from a point are made parallel.

Example 2: two consecutive lenses

Suppose we have two lenses right next to each other (with no space in between).

$$
\begin{gathered}
O_{\text {tot }}=\left[\begin{array}{cc}
1 & 0 \\
-1 / f_{2} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 / f_{1} & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-1 / f_{1}-1 / f_{2} & 1
\end{array}\right] \\
1 / f_{\text {tot }}=1 / f_{1}+1 / f_{2}
\end{gathered}
$$

So two consecutive lenses act as one whose inverse focal length is the sum of the two.

As a result, we define a measure of inverse lens focal length, the diopter.
1 diopter $=1 \mathrm{~m}^{-1}$

Recall: a system images an object when $B=0$

When $B=0$, all rays from a point $x_{\text {in }}$ arrive at a point $x_{\text {out }}$, independent of angle.

$$
\left[\begin{array}{l}
x_{\text {out }} \\
\theta_{\text {out }}
\end{array}\right]=\left[\begin{array}{ll}
A & 0 \\
C & D
\end{array}\right]\left[\begin{array}{l}
x_{\text {in }} \\
\theta_{\text {in }}
\end{array}\right]=\left[\begin{array}{c}
A x_{\text {in }} \\
C x_{\text {in }}+D \theta_{\text {in }}
\end{array}\right]
$$

$$
x_{\text {out }}=A x_{\text {in }} \quad \text { When } B=0, A \text { is the magnification. }
$$

Example 3: the Lens Law

From the object to the image, we have:

1) A distance d_{o}
2) A lens of focal length f
3) A distance d_{i}

$$
\begin{aligned}
& O= {\left[\begin{array}{ll}
1 & d_{i} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right]\left[\begin{array}{cc}
1 & d_{o} \\
0 & 1
\end{array}\right] \quad \begin{array}{c}
B=d_{o}+d_{i}-d_{o} d_{i} / f= \\
\\
\end{array}=\left[\begin{array}{cc}
1 & d_{i} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & d_{o} d_{i}\left[1 / d_{o}+1 / d_{i}-1 / f\right]= \\
-1 / f & 1-d_{o} / f
\end{array}\right] } \\
& 0 \text { if } \\
&-\left[\begin{array}{l}
1-d_{i} / f
\end{array} \begin{array}{l}
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}
\end{array}\right.
\end{aligned}
$$

This is the Lens Law.

Image magnification

If the imaging condition,

$$
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}
$$

is satisfied, then:
$O=\left[\begin{array}{cc}1-d_{i} / f & 0 \\ -1 / f & 1-d_{o} / f\end{array}\right]$
So:

Linear vs. nonlinear optics

- With linear optics, we only kept the single leading term(s) from the Taylor expansion.
- If we include higher-order terms, we get nonlinear optics: e.g. $x_{\text {out }}$ depends on not only $x_{i n}$ and $\theta_{i n}$, but also $x_{i n}{ }^{2}, x_{i n} \theta_{i n}, \theta_{i n}{ }^{2}, x_{i n}{ }^{3}$, etc.
- Linear optics matrices have $\operatorname{det} \mathrm{M}=1$ (phase space area or divergence \times size conserving optics, a.k.a. Liouville's theorem - more at the next lecture).
- Nonlinear optics is no longer phase space area conserving, beam experiences distortions known as aberrations.
- Nonlinear optics design is highly non-trivial, nowadays uses computer ray tracing: e.g. OSLO or ZeMAX software packages.

Aberrations

- Main types can be classified into geometric and chromatic aberrations
- Chromatic means color-dependent (e.g. index of refraction dependence on the wavelength)
- Geometric come from the higher orders of the Taylor expansion. Examples are:
- spherical aberration (all spherical surfaces have it but a parabollic reflector doesn't)
- coma (off-axis artifact, even aspheric lenses have this)
- astigmatism (focal length is different for different planes, e.g. asymmetry in lenses)

Spherical aberration

- Rays at different radii focus at different points
- Makes for a mushy focus, with a halo
- Positive spherical lenses have positive S.A., where exterior rays focus closer to lens
- Negative lenses have negative S.A. "Overcorrecting" a positive lens (going too far in making asphere) results in neg. S.A.

Coma

Chromatic aberration

- Glass has slightly different refractive index as a function of wavelength
- so not all colors will come to focus at the same place
- leads to colored blur
- why a prism works

- Fixed by pairing glasses with different dispersions ($d n / d \lambda$)
- typically a positive lens of one flavor paired with a negative lens of the other
- can get cancellation of this aberration
- also helps spherical aberration to have multiple surfaces
 (more design freedom)

Depth of field

Only one plane is imaged (i.e., is in focus) at a time. But we'd like objects near this plane to at least be almost in focus. The range of distances in acceptable focus is called the depth of field.

It depends on how much of the lens is used, that is, the aperture.

The smaller the aperture, the more the depth of field.

F-number

The F-number, " f / \#", of a lens is the ratio of its focal length over its diameter.

$$
f / \#=f / d
$$

$$
f / \#=f / d_{1}
$$

$$
f / \#=f / d_{2}
$$

Large f-number lenses collect more light but are harder to engineer.

Numerical aperture/diffraction limited resolution

A related quantity is numerical aperture

$$
\mathrm{NA}=n \sin \theta
$$

For small angles: $\mathrm{NA}=\frac{1}{2(f / \#)}$
Most significant application - diffraction-limited focused spot:

$$
D_{\text {limit }}=\frac{2}{\pi} \frac{\lambda}{\mathrm{NA}}
$$

Ray tracing software: OSLO

OSLO (Optics Software for Layout and Optimization) is a powerful optical design software. Does ray tracing (all types of aberrations) but can also include diffraction effects.

A free version (limited to 10 optical surfaces) is downloadable from
http://www.lambdares.com/buy/educators-and-students

Links/References

www.gabrielse.us/physics/optics/powerpoints/Geometric\%200ptics.ppt

http://physics.ucsd.edu/~tmurphy/phys121/lectures/05 optics.ppt

