
Geometric optics P3330 Exp Optics          FA’20161

Geometric optics

Ivan Bazarov
Cornell Physics Department / CLASSE

Outline
• Eikonal equation
• Linear optics: ABCD matrices
• Non-linear optics: aberrations
• Depth of field, F#
• Diffraction limit, NA, resolving power
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Eikonal equation

Eikonal – (from gr. εἰκών) scalar ‘potential’ S, whose gradient defines the 
direction of rays (‘field lines’). E.g. compare to:

Difference between eikonal in points A and B
gives optical path length:

Eikonal equation

Mathematically equivalent 
to Fermat’s principle!!

rS || ŝ

example

rS(~r) = n(~r)ŝ

S(~r) = constant

S(~rB)� S(~rA) =
Z B

A
|rS| ds =

Z B

A
nds = optical path length

~E = �rV
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Ray vector (paraxial approximation)

A light ray can be defined by two co-ordinates:

xin , qin

xout , qout

its position, x

its slope, q

Optical axis

x

q

These parameters define a ray vector,          
which will change with distance and as 
the ray propagates through optics.
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Linear optics

We can write 
these equations 
in matrix form.

Since the displacements and angles 
are assumed to be small, we can 
think in terms of a linear combination 
with partial derivatives as coefficients 
(leading Taylor series expansion 
terms…)
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ABCD matrix

Thus, we can define 2 x 2 ray matrices for any element.

An element’s effect on a ray is found by multiplying its ray vector.

Ray matrices
can describe
simple and com-
plex systems.

These matrices are often called ABCD Matrices.
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Physical meaning of the matrix elements
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A = “spatial magnification”.
B = “length to the object”. B = 0 means that rays emitted at different angles 
end up at the same x offset (condition to form an image).
C = “focusing power” or negative inverse focal length. C = 0 means that 
parallel rays stay parallel (collimating optics).
D = “angular magnification”.
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Ray matrix for a free space or a medium

If xin and qin are the position and slope upon entering, let xout and qout be 
the position and slope after propagating from z = 0 to L.

xout = xin + Lθin
θout = θinxin, qin

z = 0

xout qout

z = L xout
θout
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Rewriting these expressions 
in matrix notation:

Ospace =  1 L
0 1
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Ray matrix for a thin ideal lens

The quantity, f, is the focal length of the lens. It’s the single most 
important parameter of a lens. It can be positive or negative.

1 0
=  

-1/ 1lensO
f

é ù
ê ú
ë û

If f > 0, the lens deflects 
rays toward the axis. 

f > 0

If f < 0, the lens deflects 
rays away from the axis.

f < 0

1/ f = (n−1)(1/ R1 −1/ R2 )

R1 > 0
R2 < 0

R1 < 0
R2 > 0

lens maker formula

xout = xin
θout = θin +

xin
− f
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Combining matrices of multiple elements 
(must include drifts!!)

T1 T2 T3

T = T3T2T1

As with Jones’ matrices: multiply in the reverse order
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Example 1: a lens focuses parallel rays to a 
point one focal length away

01 1 0 0
/0 1 1/ 1 0 1/ 1 0

out in in

out in

x f x f x
x ff fq

é ù é ùé ù é ù é ù é ù é ù
= = =ê ú ê úê ú ê ú ê ú ê ú ê ú -- -ë û ë û ë û ë û ë ûë û ë û

f

f

At the focal plane, all rays converge 
to the z axis (xout = 0) independent of 
input position.

Parallel rays at a different angle 
focus at a different xout.

A lens followed by propagation by one focal length:

Assume all input 
rays have qin = 0

For all rays 
xout = 0!

Looking from right to left, rays diverging from a point are made parallel.
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Example 2: two consecutive lenses

2 1 1 2

1 0 1 0 1 0
=  =  

-1/ 1 -1/ 1 -1/ 1/ 1totO
f f f f

é ù é ù é ù
ê ú ê ú ê ú-ë û ë û ë û

f1 f2

Suppose we have two lenses 
right next to each other (with no 
space in between).

tot 1 21/ =1/ +1/f f f
So two consecutive lenses act as one whose inverse focal length is the sum 
of the two.

As a result, we define a measure of inverse lens focal length, the diopter.
1 diopter = 1 m-1
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Recall: a system images an object when B = 0

When B = 0, all rays from a 
point xin arrive at a point xout, 
independent of angle.

xout = A xin When B = 0, A is the magnification.

0out in in

out in in in

x x AxA
C x DC Dq q q
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Example 3: the Lens Law
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From the object to 
the image, we have:

1) A distance do
2) A lens of focal length f
3) A distance di

1 1 1

o id d f
+ =

This is the Lens Law.
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Image magnification

1 1 1

o id d f
+ =
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If the imaging condition,

is satisfied, then:
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So:
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Linear vs. nonlinear optics

• With linear optics, we only kept the single leading term(s) from the Taylor 
expansion.

• If we include higher-order terms, we get nonlinear optics: e.g. xout
depends on not only xin and qin, but also xin

2, xinqin, qin
2, xin

3, etc.

• Linear optics matrices have det M = 1 (phase space area or 
divergence×size conserving optics, a.k.a. Liouville’s theorem – more at 
the next lecture).

• Nonlinear optics is no longer phase space area conserving, beam 
experiences distortions known as aberrations.

• Nonlinear optics design is highly non-trivial, nowadays uses computer ray 
tracing: e.g. OSLO or ZeMAX software packages.
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Aberrations

• Main types can be classified into geometric and chromatic aberrations

• Chromatic means color-dependent (e.g. index of refraction dependence on 
the wavelength)

• Geometric come from the higher orders of the Taylor expansion. 
Examples are:

• spherical aberration (all spherical surfaces have it but a parabollic
reflector doesn’t)

• coma (off-axis artifact, even aspheric lenses have this)

• astigmatism (focal length is different for different planes, e.g. 
asymmetry in lenses)
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Spherical aberration

• Rays at different radii focus 
at different points

• Makes for a mushy focus, 
with a halo

• Positive spherical lenses 
have positive S.A., where 
exterior rays focus closer to 
lens

• Negative lenses have 
negative S.A. 
“Overcorrecting” a positive 
lens (going too far in making 
asphere) results in neg. S.A.

lens side

neg. S.A.

zero S.A.

pos. S.A.
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Coma

• Off-axis rays meet at different 
places depending on ray height

• Leads to asymmetric image, looking 
something like a comet (with 
nucleus and flared tail)
– thus the name coma

• As with all aberrations, gets worse 
with larger apertures

• Exists in parabolic reflectors, even if 
no spherical aberration
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Chromatic aberration

• Glass has slightly different 
refractive index as a function of 
wavelength
– so not all colors will come to 

focus at the same place
– leads to colored blur
– why a prism works

• Fixed by pairing glasses with 
different dispersions (dn/dl)
– typically a positive lens of one 

flavor paired with a negative 
lens of the other

– can get cancellation of this 
aberration

– also helps spherical aberration 
to have multiple surfaces 
(more design freedom)
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Depth of field

f

It depends on how much of the lens is used, that is, the aperture.

Only one plane is imaged (i.e., is in focus) at a time.  But we’d like objects 
near this plane to at least be almost in focus. The range of distances in 
acceptable focus is called the depth of field.

Out-of-focus 
plane

Focal 
plane

Object

Image
Size of blur in 
out-of-focus 

plane

Aperture

The smaller the aperture, the more the depth of field.
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F-number

The F-number, “f / #”, of a lens is the ratio of its focal length over its diameter.

f / #  =  f / d

f

f

d1 f

f

d2

f / #  = f / d1 f / #  = f / d2

Large f-number lenses collect more light but are harder to engineer.
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Numerical aperture/diffraction limited 
resolution

A related quantity is numerical aperture

For small angles:

Most significant application – diffraction-limited focused spot:

NA = n sin ✓

for medium, i.e. 1 for air

NA =
1

2(f/#)

Dlimit =
2

⇡

�

NA

Dlimit
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Ray tracing software: OSLO

OSLO (Optics Software for Layout and Optimization) is a powerful 
optical design software. Does ray tracing (all types of aberrations) but 
can also include diffraction effects.

A free version (limited to 10 optical surfaces) is downloadable from

http://www.lambdares.com/buy/educators-and-students
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Links/References

www.gabrielse.us/physics/optics/powerpoints/Geometric%20Optics.ppt

http://physics.ucsd.edu/~tmurphy/phys121/lectures/05_optics.ppt


