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 Rays in phase space

 Phase space ellipse transformation
 Rayleigh range

» Diffraction limited phase space area
 Gaussian laser beam and its properties
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Phase space definition

coordinates.

(Transverse) phase space — every ray is represented on a 2D plane with (x, 6,)
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Why think in terms of phase space?

« The main motivation is “ray ensemble” description

» Liouville’s theorem: phase space volume is incompressible fluid

» Phase space volume (area) = emittance (~wavelength for laser beams)
* Linear optics does not change the emittance (ABCD matrix has det = 1)

Ox

optics (no wave phenomena).

and its transport (with ABCD matrices!).

€ = O enist * 00, wais = \/ (22) (62) — (30,,)’

(Units of meters!) assuming (z) =0, () = 0. S

» Limitation of the phase space: only works for geometric

» Important exception to this rule: Gaussian beams perfectly account for the
diffraction limit and still can be described in terms of classical phase space
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* Phase space is sheered along the x-direction (phase space area is conserved!)
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Phase space is sheered along the 0-direction (phase space area is conserved)
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Phase space ellipse & Z-matrix
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e.g. 2D Gaussian distribution:
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o(x,0,) = const gives ellipse equations

det[...]=1
/ .
B -a Twiss parameters
a (ellipse orientation)
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Given an ABCD matrix M:
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how to transform the sigma matrix?
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Z"out =M Z"in MT

Can rewrite as:
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Twiss-parameter transformation for a drift

Given the ray transformation for a drift of length z:

AR

Twiss parameter transformation matrix becomes:

_B_ 1 —22z z2__5_
Q = | 0 1 —2z Qv
R _O 0 1__7_0

If z =0 is location of beam waist, then oo = 0 and since By — a2 = 1 we have:

2 :
< beam waist value

B(z) = B + G
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Rayleigh range

« This B-function is also known as the Rayleigh range (units of meters)

* Recallthat g, = \/(x?) = \/@ +B(2)

ix

« Physical meaning of the Rayleighrange 1.
- how tight a focus spot one can get;

- distance over which the cross-section

area of the beam doubles. 0 B*
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Given the ray transformation for a lens with focal length f:

EA P VR
z after B _1/f 1 z before

Twiss parameter transformation matrix becomes:

1 0o 0] [ A
/f 1 0 o
2
d after L 1/f 2/f 1 - i before
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Smallest epsilon (phase space area) of light?

e ¢ can be arbitrarily large depending on the source.

 What is the smallest phase space area?

OyOp, = /2 Uncertainty Principle
Ox pO_Qw) > h/2
.09, > h/2p

photon’s full momentum

€ > h/2p wavenumber
ot

e > h/(2hk)
€ > \N/4m

wavelength

» Absolute smallest ¢ for light is € = A/4r which is realized only
for a Gaussian mode laser beam.
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Example1: shoot laser to the Moon
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» Suppose you are trying to send a focused laser beam to the Moon to establish
a communication link while minimizing the overall beam diameter. What is the
smallest lens/mirror diameter you would require on Earth for that (ignore any
lensing due to the Earth’s atmosphere)?

Distance to the Moon d = 384,400 km = 3.844 X108 m
Laser wavelength A = 0.4 um (violet, perfectly Gaussian laser mode)

Choose the Rayleigh range to be equal to the distance d: p* = d

Then the rms laser spot at the “lens” on Earth is: ¢, = 1/26*(\/47) ~ 4.9m
So the “lens” at the full width half max (FWHM) must be: 2.35X%X o, =211.5 m

The rms spot on the Moon would be: ¢, \oon = \/ﬁ* (A/4m) ~ 3.5m

Remark1: the actual spot will be larger because the “lens” is clipping the
Gaussian beam, which will lead to the diffraction effects blowing up the size...

Remark2: what sort of accuracy to its shape must such a lens/mirror have? Is it
even feasible?
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Example2: laser cutter design choices

* You have designed a laser welder that has a 1 micron rms spot size on the
target using a 0.4 um laser Gaussian laser source. How precisely should the
distance to the target be controlled so that the intensity fluctuations remain
within a factor of 2?

This is exactly the definition of the Rayleigh range. So, we find:
B=02/(\4r) ~ 31.4pum

In other words, such a laser welder would have a very small depth-of-focus and
wouldn’t be able to cut very deep into metal.

Relaxing the focused spot requirement to 10 microns would result in 3.1 mm
depth-of-focus, which is way more reasonable for cutting thin metal sheets.
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Gaussian beam

Gaussian beam — an exact solution to Maxwell equations within the paraxial
approximation

Its propagation can be treated classically (using ABCD matrix) assuming a
pure Gaussian distribution in phase space with a given B-function (=Rayleigh
range) and emittance ¢ = A\/4r

This will always work provided that the optics is linear (lenses are ideal) and no
clipping of light happens anywhere!
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Wavefront curvature of Gaussian beams

Note:

Even though the classical propagation works for Gaussian beam, it's a more rich
object = mode with electric field defined everywhere and perfectly coherent.

E.g. the field wavefront has a perfectly defined phase, with its curvature given by

600 T T *2.
R(z) =z + =

400 [
|
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when z > [*, the beam behaves as a spherical wave
when z < B*, the beam behaves as a planar wave
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TEM,,,

Emittance for Hermite-Gaussian beam is given by

A
€, = — (2m + 1)
47
A (2n + 1)
€ n 2 —
y — 47'(' M

M2 beam quality factor

M? =

€

/A

> 1

= 1 only for a pure Gaussian beam!
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Links/References

Gaussian beam plots taken from

Hermite-, Laguerre-Gauss beam pics taken from Wikipedia
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