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Rays in phase space & Gaussian beams

Ivan Bazarov
Cornell Physics Department / CLASSE

Outline
• Rays in phase space
• Phase space ellipse transformation
• Rayleigh range
• Diffraction limited phase space area
• Gaussian laser beam and its properties
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Phase space definition

(Transverse) phase space – every ray is represented on a 2D plane with (x, qx) 
coordinates.
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Why think in terms of phase space?

• The main motivation is “ray ensemble” description
• Liouville’s theorem: phase space volume is incompressible fluid

• Phase space volume (area) = emittance (~wavelength for laser beams)
• Linear optics does not change the emittance (ABCD matrix has det = 1)

(units of meters!)

• Limitation of the phase space: only works for geometric
optics (no wave phenomena).

• Important exception to this rule: Gaussian beams perfectly account for the 
diffraction limit and still can be described in terms of classical phase space 
and its transport (with ABCD matrices!).
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Phase space transformation: drift

xout = xin + Lθin
θout = θin

xin, qin

z = 0

xout qout
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in out
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• Phase space is sheered along the x-direction (phase space area is conserved!)
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Phase space transformation: thin lens

xout = xin

θout = θin +
xin
− f

x

θx
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• Phase space is sheered along the q-direction (phase space area is conserved)
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Example: linear optics with four thick lenses
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https://www.youtube.com/watch?v=fM4GYnMgGcQ
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Phase space ellipse & S-matrix
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e.g. 2D Gaussian distribution:

r(x,qx) = const gives ellipse equations

Twiss parameters
(ellipse orientation)
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Sigma-matrix propagation

• Given an ABCD matrix M:

how to transform the sigma matrix?

• Can rewrite as:
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Twiss-parameter transformation for a drift
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Given the ray transformation for a drift of length z:

Twiss parameter transformation matrix becomes:

If z = 0 is location of beam waist, then a = 0 and since bg – a2 = 1 we have:

�(z) = �⇤ +
z2

�⇤
beam waist value
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Rayleigh range

• This b-function is also known as the Rayleigh range (units of meters)

• Recall that

• Physical meaning of the Rayleigh range
- how tight a focus spot one can get;
- distance over which the cross-section

area of the beam doubles.
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Twiss-parameter transformation for a lens

Given the ray transformation for a lens with focal length f :

Twiss parameter transformation matrix becomes:
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Smallest epsilon (phase space area) of light?

• e can be arbitrarily large depending on the source.

• What is the smallest phase space area?
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Uncertainty Principle
photon’s full momentum

wavenumber

wavelength

• Absolute smallest e for light is e = l/4p which is realized only 
for a Gaussian mode laser beam.
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Example1: shoot laser to the Moon

• Suppose you are trying to send a focused laser beam to the Moon to establish 
a communication link while minimizing the overall beam diameter. What is the 
smallest lens/mirror diameter you would require on Earth for that (ignore any 
lensing due to the Earth’s atmosphere)?

Distance to the Moon d = 384,400 km = 3.844×108 m
Laser wavelength l = 0.4 µm (violet, perfectly Gaussian laser mode)

�
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Choose the Rayleigh range to be equal to the distance d: b* = d
Then the rms laser spot at the “lens” on Earth is:
So the “lens” at the full width half max (FWHM) must be:  2.35×sx ≈ ∅11.5 m
The rms spot on the Moon would be: 

Remark1: the actual spot will be larger because the “lens” is clipping the 
Gaussian beam, which will lead to the diffraction effects blowing up the size…
Remark2: what sort of accuracy to its shape must such a lens/mirror have? Is it 
even feasible?
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Example2: laser cutter design choices

• You have designed a laser welder that has a 1 micron rms spot size on the 
target using a 0.4 µm laser Gaussian laser source. How precisely should the 
distance to the target be controlled so that the intensity fluctuations remain 
within a factor of 2?

� = �2
x

/(�/4⇡) ⇡ 31.4µm

This is exactly the definition of the Rayleigh range. So, we find:

In other words, such a laser welder would have a very small depth-of-focus and 
wouldn’t be able to cut very deep into metal.

Relaxing the focused spot requirement to 10 microns would result in 3.1 mm 
depth-of-focus, which is way more reasonable for cutting thin metal sheets.
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Gaussian beam

Gaussian beam – an exact solution to Maxwell equations within the paraxial 
approximation

Its propagation can be treated classically (using ABCD matrix) assuming a 
pure Gaussian distribution in phase space with a given b-function (=Rayleigh 
range) and emittance e = l/4p

This will always work provided that the optics is linear (lenses are ideal) and no 
clipping of light happens anywhere!
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Wavefront curvature of Gaussian beams

Even though the classical propagation works for Gaussian beam, it’s a more rich 
object = mode with electric field defined everywhere and perfectly coherent.

E.g. the field wavefront has a perfectly defined phase, with its curvature given by

Note: when z ≫ b*, the beam behaves as a spherical wave
when z ≪ b*, the beam behaves as a planar wave
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�⇤2

z
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Other solutions to Maxwell equations

Hermite-Gaussian

TEMmn

Laguerre-Gaussian

Emittance for Hermite-Gaussian beam is given by
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M2 = 1 only for a pure Gaussian beam!
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Links/References

Gaussian beam plots taken from Encyclopedia of Laser Physics and 
Technology

Hermite-, Laguerre-Gauss beam pics taken from Wikipedia


