Lecture 1

I. Bazarov, Newman 210 / Wilson 373

Website: blackboard.cornell.edu (self enroll)
 => TA info, office hours, etc.

 I. Bazarov, Supplement

Labs: 401 MW 7:30PM - 10:30PM starts today!
 402 TR 1:25PM - 4:25PM

HW: 1 each week, due next week (Friday)
 Soln. handed out \rightarrow \text{no} late HW accepted

Grade: 40\% lab
 40\% exam (prelim + final)
 15\% HW
 5\% participation (e.g. mailing list)

More info: Blackboard, printouts, 1st lab (!)

Goals: - design & build simple circuits
 - trouble shoot equipment
 - analyze complicated circuit diagrams
Typical Electronic Device

Input Transducer: Converts physical quantity into electric signal (and vice versa)

- **Input Transducer**: e.g. thermistor \((T \rightarrow R)\)
 - Microphone (sound \(\rightarrow\) electric signal)

- **Output Transducer**: e.g. LED (electr. \(\rightarrow\) light)
 - Speaker (electr. \(\rightarrow\) sound)
 - Robotic arm (aka actuator)

Two Types of Circuits

- **Analog**: Info is represented by continuously varying signal
 - Typical functions: amplification
 - Filters (bass, treble)
 - Mixing
 - Q: Possible problems?
 - Sensitive to noise
 - P.S. drift

- **Digital**: Input/output signals have discrete values, e.g. 0 and 5V
 - Typical functions: memory, storage, logic, etc.
Basic quantities of interest

\[V = \text{voltage} = \text{electric potential difference} \]
(measured w.r.t. some reference, e.g. "ground")

\[[V] = \text{volts} \]

\[q \Delta V = \Delta P E \] (of charge \(q\) due to \(\Delta V\))

\[I = \text{current} = \text{charge flow rate} = \text{charge/unit time} \]

\[[I] = \text{amps} \]

\[\text{direction: dir. of +ve charge flow} \]

DC : \(I, V\) indep. of time
AC : \(-\) time varying

Convention

\[I, V - \text{pure dc} \]
\[i, \Delta - \text{ac or dc+ac} \]

\(I, V\) - represent physical quantities (sound, temp, color, etc.)

Electric circuit - interconnection of electric devices which creates and/or manipulates \(I, V\) to perform some function.

Linear circuit devices

1. Resistor

\[V_2 \frac{R}{\Omega} V_1 \]

\[I \]

obeys Ohm's law

\[I = \frac{V_2 - V_1}{R} = \frac{V}{R} \]

\[[R] = \text{ohm, } \Omega \]
"I-V curve" \(R \neq f(I,V) \)

<table>
<thead>
<tr>
<th>Color</th>
<th>Value</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>0</td>
<td>n/a - 20%</td>
</tr>
<tr>
<td>Brown</td>
<td>1</td>
<td>silver - 10%</td>
</tr>
<tr>
<td>ROY</td>
<td>2.3</td>
<td>gold - 5%</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>6.7</td>
<td>Richard of York gave battle in vain</td>
</tr>
<tr>
<td>Gray</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Typical power rating \(\frac{1}{4} \) to \(\frac{1}{2} \) W

Conductance = inverse resistance = \(G = \frac{1}{R} = \frac{I}{V} \)

\([G] = \text{siemens (mho)}\)

Series resistors:

\(R_T = \sum R_k \) add resistances

Parallel:

\(G_T = \sum G_k \) add conductances, \(R_T = G_T^{-1} \)

\(R_T = \frac{R_1 R_2}{R_1 + R_2} = R_1 \parallel R_2 \)

\(\Delta \rightarrow Y : \quad R = \frac{R_a + R_b + R_c}{R} \)
\(R_1 = \frac{R_b R_c}{R} \), \(R_2 = \frac{R_c R_a}{R} \), \(R_3 = \frac{R_a R_b}{R} \)

\(Y \rightarrow \Delta : \quad G = G_1 + G_2 + G_3 \)
\(G_a = \frac{G_2 G_3}{G} \), \(G_b = \frac{G_3 G_1}{G} \), \(G_c = \frac{G_1 G_2}{G} \)

\(n_1 \) \(n_2 \) \(n_3 \)

\(R_a \) \(R_b \) \(R_c \)

\(\Delta \) \(Y \) transformation

can be made equivalent

proof: HW