MOSFET circuits

1)

2)

FET Variants

MOSFET pros & cons (vs BJT's)

+ +

+
MOSFET analysis example

Suggestions

- This biasing is called

1. Find Q-pt.

Approximately
2) Small-signal equivalent

KVL & KCL:

Input impedance: \(R_I = \frac{V_{in}}{I_{in}} \)

Output impedance: \(R_{out} = \frac{V_{out}}{I_{out, sc}} \)

Choosing caps:
Lecture 23

Analog signals

Digital signals
<table>
<thead>
<tr>
<th>Original Signal (vs. time)</th>
<th>Analog</th>
<th>Digital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal + Noise</td>
<td></td>
<td>0101</td>
</tr>
<tr>
<td>Recovered?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbitrary Shapes?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Digital representation of info

1

2

a)
<table>
<thead>
<tr>
<th>decimal</th>
<th>binary</th>
<th>Gray code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Types of digital circuits

Truth table
Lecture 24

Boolean operations & gates

All digital operations can be reduced to

Gates =

- NOT

- AND
Multiple inputs AND

OR

Multiple inputs OR

Application of time dependent signal

\[X = A \cdot B = A \bar{A} = 0 \]
any complicated function

Universal gates

NAND

NOR
De Morgan Theorem

Alternatively

Rules of Boolean algebra