
2.4 Logic Minimization and Karnaugh Maps

As we found above, given a truth table, it is always possible to write down a correct logic
expression simply by forming an OR of the ANDs of all input variables for which the output is
true (Q = 1). However, for an arbitrary truth table such a procedure could produce a very
lengthy and cumbersome expression which might be needlessly ine�cient to implement with
gates.

There are several methods for simpli�cation of Boolean logic expressions. The process is
usually called \logic minimization", and the goal is to form a result which is e�cient. Two
methods we will discuss are algebraic minimization and Karnaugh maps. For very compli-
cated problems the former method can be done using special software analysis programs.
Karnaugh maps are also limited to problems with up to 4 binary inputs.

Let's start with a simple example. The table below gives an arbitrary truth table involving
2 logic inputs.

Table 1: Example of simple arbitrary truth table.
A B Q
0 0 1
0 1 1
1 0 0
1 1 1

There are two overall stategies:

1. Write down an expression directly from the truth table. Use Boolean algebra, if desired,
to simplify.

2. Use Karnaugh mapping (\K-map"). This is only applicable if there are � 4 inputs.

In our example above, we can use two di�erent ways of writin down a result directly from
the truth table. We can write down all TRUE terms and OR the result. This gives

Q = �A �B + �AB +AB

While correct, without further simpli�cation this expression would involve 3 2-input AND

gates, 2 inverters, and 1 3-input OR gate.
Alternatively, one can write down an expression for all of the FALSE states of the truth

table. This is simpler in this case:

Q = A �B ! Q = A �B = �A+B

where the last step results from Eqn. 3. Presumably, the two expressions can be found to
be equivalent with some algebra. Certainly, the 2nd is simpler, and involves only an inverter
and one 2-input OR gate.

8



Finally, one can try a K-map solution. The �rst step is to write out the truth table in
the form below, with the input states the headings of rows and columns of a table, and the
corresponding outputs within, as shown below.

Table 2: K-map of truth table.
AnB 0 1
0 1 1
1 0 1

The steps/rules are as follows:

1. Form the 2-dimensional table as above. Combine 2 inputs in a \gray code" way { see
2nd example below.

2. Form groups of 1's and circle them; the groups are rectangular and must have sides of
length 2n � 2m, where n and m are integers 0; 1; 2; : : :.

3. The groups can overlap.

4. Write down an expression of the inputs for each group.

5. OR together these expressions. That's it.

6. Groups can wrap across table edges.

7. As before, one can alternatively form groups of 0's to give a solution for Q.

8. The bigger the groups one can form, the better (simpler) the result.

9. There are usually many alternative solutions, all equivalent, some better than others
depending upon what one is trying to optimize.

Here is one way of doing it:
AnB 0 1
0 1 1
1 0 1

The two groups we have drawn are �A and B. So the solution (as before) is:

Q = �A+B

2.4.1 K-map Example 2

Let's use this to determine which 3-bit numbers are prime. (This is a homework problem.)
We assume that 0; 1; 2 are not prime. We will let our input number have digits a2a1a0. Here
is the truth table:

Here is the corresponding K-map and a solution.
Note that where two inputs are combined in a row or column that their progression

follows gray code, that is only one bit changes at a time. The solution shown above is:

Q = a1a0 + a2a0 = a0(a1 + a2)

9



Table 3: 3-digit prime �nder.
Decimal a2 a1 a0 Q

0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 0
7 1 1 1 1

Table 4: K-map of truth table.
a2na1 a0 00 01 11 10

0 0 0 1 0
1 0 1 1 0

10



2.4.2 K-map Example 3: Full Adder

In this example we will outline how to build a digital full adder. It is called \full" because
it will include a \carry-in" bit and a \carry-out" bit. The carry bits will allow a succession
of 1-bit full adders to be used to add binary numbers of arbitrary length. (A half adder

includes only one carry bit.)

a

b

Cin

S

Cout

a i

b i

Cin
i

Si

Cout
i

Σ

Figure 7: Block schematic of full adder. (We name our adder the \� chip").

The scheme for the full adder is outlined in Fig. 7. Imagine that we are adding two n-bit
binary numbers. Let the inputs ai and bi be the i-th bits of the two numbers. The carry in
bit Cini represents any carry from the sum of the neighboring less signi�cant bits at position
i � 1. That is, Cini = 1 if ai�1 = bi�1 = 1, and is 0 otherwise. The sum Si at position i is
therefore the sum of ai, bi, and Cini. (Note that this is an arithmetic sum, not a Boolean
OR.) A carry for this sum sets the carry out bit, Couti = 1, which then can be applied to the
sum of the i+ 1 bits. The truth table is given below.

Cini ai bi Si Couti
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

With Cini = 0, we see that the output sum Si is just given by the XOR operation, ai� bi.
And with Cini = 1, then Si = ai � bi. Perhaps the simplest way to express this relationship
is the following:

Si = Cini � (ai � bi)

To determine a relatively simple expression for Couti, we will use a K-map:

Cininai bi 00 01 11 10
0 0 0 1 0
1 0 1 1 1

11



This yields
Couti = aibi + Ciniai + Cinibi = aibi + Cini(ai + bi)

which in hardware would be 2 2-input OR gates and 2 2-input AND gates.
As stated above, the carry bits allow our adder to be expanded to add any number of

bits. As an example, a 4-bit adder circuit is depicted in Fig. 8. The sum can be 5 bits, where
the MSB is formed by the �nal carry out. (Sometimes this is referred to as an \over
ow"
bit.)

a b
CinCout

S
Σ

a b
CinCout

S
Σ

a b
CinCout

S
Σ

a b
CinCout

S
Σ

a

b 0

0a

b

aa

bb
123

123

S
0

SSSS
1234

Figure 8: Expansion of 1-bit full adder to make a 4-bit adder.

2.4.3 Making a Multiplier from an Adder

In class we will discuss how to use our full adder (the \� chip") to make a multiplier.

2.5 Multiplexing

A multiplexer (MUX) is a device which selects one of many inputs to a single output. The
selection is done by using an input address. Hence, a MUX can take many data bits and
put them, one at a time, on a single output data line in a particular sequence. This is an
example of transforming parallel data to serial data. A demultiplexer (DEMUX) performs
the inverse operation, taking one input and sending it to one of many possible outputs.
Again the output line is selected using an address.

A MUX-DEMUX pair can be used to convert data to serial form for transmission, thus
reducing the number of required transmission lines. The address bits are shared by the MUX
and DEMUX at each end. If n data bits are to be transmitted, then after multiplexing, the
number of separate lines required is log

2
n + 1, compared to n without the conversion to

serial. Hence for large n the saving can be substantial. In Lab 2, you will build such a
system.

Multiplexers consist of two functionally separate components, a decoder and some switches
or gates. The decoder interprets the input address to select a single data bit. We use the
example of a 4-bit MUX in the following section to illustrate how this works.

2.5.1 A 4-bit MUX Design

We wish to design a 4-bit multiplexer. The block diagram is given in Fig. 9. There are 4
input data bits D0{D3, 2 input address bits A0 and A1, one serial output data bit Q, and

12



an (optional) enable bit E which is used for expansion (discussed later). First we will design
the decoder.

C3 C C C2 1 0

DECODER

D

D

D

D0

1

2

3

GATES
/SWITCHES

Q

E MUX

A1

A0

Figure 9: Block diagram of 4-bit MUX.

We need m address bits to specify 2m data bits. So in our example, we have 2 address
bits. The truth table for our decoder is straightforward:

A1 A0 C0 C1 C2 C3

0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

The implementation of the truth table with standard gates is also straightforward, as
given in Fig. 10.

A1

A0

C3 C C C2 1 0

Figure 10: Decoder for the 4-bit MUX.

For the \gates/switches" part of the MUX, the design depends upon whether the input
data lines carry digital or analog signals. We will discuss the analog possibility later. The
digital case is the usual and simplest case. Here, the data routing can be accomplished

13



simply by forming 2-input ANDs of the decoder outputs with the corresponding data input,
and then forming an OR of these terms. Explicitly,

Q = C0D0 + C1D1 + C2D2 + C3D3

Finally, if an ENABLE line E is included, it is simply ANDed with the righthand side of this
expression. This can be used to switch the entire MUX IC o�/on, and is useful for expansion
to more bits. as we shall see.

14


