
Computers and Microprocessors

1

Computers and Microprocessors
lecture 2

PHYS3360/AEP3630

Apr 14, 2009

Contents

• Input/output standards

• Microprocessor evolution

• Computer languages & operating systems

• Information encryption/decryption

2

• USB (universal serial bus)
– intelligent high-speed connection to devices

– up to 480 Mbit/s (USB 2.0 Hi-Speed)

– USB hub connects multiple devices

– enumeration: computer queries devices

– supports hot swapping, hot plugging

Input/Output Ports

3

– supports hot swapping, hot plugging

• Parallel

– short cable, Enhanced PP up to 2 Mbit/s

– common for printers, simpler devices

– bidirectional, parallel data transfer (IEEE 1284)

– Intel 8255 controller chip

• Serial
– one bit at a time

– RS-232 (recommended standard 232) serial port

– used with long cables (shorter than ~15 m OK)

– low speeds (up to 115 kbit/s)

– still widely used to interface instruments

Input/Output Ports (2)

4

– still widely used to interface instruments

– additional standards available:
• E.g. RS-422/485 differential signals for better noise immunity,

can support speeds in access of 10 Mbit/s (becomes cable-

length dependent)

• IEEE-488 (GPIB)
– Has been around for 30 years, many

instruments are equipped with it

– Allows daisy-chaining up to 15 devices

– Updated versions have speeds up to 10Mbit/s

Input/Output Ports (3)

5

• Generally characterized by the “word” size
(registers and data bus)

– 8-bit, 16-bit, 32-bit, 64-bit
– addressable memory related to the word size

• Intel 8080 (1974)

– 8-bit, first truly usable µ−processor (40 DIP)

Microprocessor Evolution

6

– 8-bit, first truly usable µ−processor (40 DIP)
– seven 8-bit registers (six of which can be

combined as three 16-bit registers)
– 6K transistors, 2MHz clock
– Other notable 8-bit processors include Zilog

Z80 (1976) (used in Osborne 1, first portable
µ-computer) and Motorola 6800/6809 (1978)

– Small cost, compact packaging allowed home
computer revolution

• Intel 8080 later variants

– 64K addressable RAM (16-bit bus address)
– 8-bit registers
– CP/M (control program for µ−computers) OS
– 5,6,8,10 MHz
– 29K transistors

Early Intel Processors

7

• Intel 8086/8088 (1978)

– 16-bit processor, IBM-PC used 8088
– 1 MB addressable RAM (20-bit addresses)
– 16-bit registers
– 16-bit data bus (8-bit for 8088)
– separate floating-point unit (8087)
– used in low-cost microcontrollers now

• Western Design Center (WDC 65816)

– used in Apple II and Super Nintendo
– fully CMOS, low power consumption (300 µA

at 1MHz, operating voltage as low as 1.8V)
– Wait-for-Interrupt and Stop-the-Clock

instructions further reduce power consumption
– one of the most popular (made in huge numbers)

Other 16-bit processors

8

– one of the most popular (made in huge numbers)
– Still sold today (original 1984), used as a

controller
– 24-bit address bus (16MB of memory space)

• Texas Instrument TM9900, National
Semiconductor IMP-16, etc.

• Intel 80286 (1982)

– Still largely a 16-bit processor

– 16 MB addressable RAM

– Protected memory

– several times faster than 8086

IBM-AT

9

– introduced IDE bus architecture

– 80287 floating point unit

– Up to 20MHz

– 134K transistors

• Motorola 680x0 series

– 32-bit registers

– 68010 (1982) adds virtual memory support

– Other successors 68020/68030/68040/68060

– Popular with UNIX operating systems in late
1980’s/early 1990’s

32-bit processors

10

1980’s/early 1990’s

– Faded from computer desktop market, but had a strong
standing in embedded / controller equipment (still used)

• “Microprocessor wars”
– leads to elimination of some / survival of the fittest. In

aftermath, the PC market to be largely dominated by IA-32;
however, much more diversity exists for the controllers

• Intel386 (1985)

– 4 GB addressable RAM
– 32-bit registers
– paging (virtual memory)
– Up to 33MHz

• Intel486 (1989)

IA-32

11

• Intel486 (1989)

– instruction pipelining
– Integrated FPU
– 8K cache

• Pentium (1993)

– Superscalar (two parallel pipelines)
– Intel declines to license Pentium to others,

AMD and Cyrix start their own designs

• Pentium Pro (1995)
– advanced optimization techniques in µ-code
– More pipeline stages
– On-board L2 cache

• Pentium II (1997)
– MMX (multimedia) instruction set
– Up to 450MHz

• Pentium III (1999)

Intel Pentium Family

12

• Pentium III (1999)
– SIMD (streaming extensions) instructions (SSE)
– Up to 1+GHz

• Pentium 4 (2000)
– NetBurst micro-architecture, tuned for multimedia
– 3.8+GHz

• Pentium D (Dual core)
• …

• 2003 data (from Wikipedia)
– $44 billion dealt in business on microprocessors
– Personal computers account for 50% of cost but

only 0.2% of all CPU’s sold
– 55% of all CPU’s sold are 8-bit controllers (many

billions sold overall)

Some interesting statistics

13

billions sold overall)
– Less than 10% of all CPU’s are 32-bit or more
– Of all 32-bit processors sold, only 2% are used in

personal computers (laptops/desktops)
– “Taken as a whole, the average price for

microprocessor, microcontroller, or DSP is just
over $6”

– Read more at
http://www.embedded.com/shared/printableArticle.jhtml?articleID=9900861

Programming

• Interpreted High Level

Language

• Compiled High Level

Language

14

Language

• Assembly Language

• Machine Language

Programming (2)
• Machine Language

– binary instructions (op codes) actually read and
interpreted by the CPU

Ex: 1000 1011 0000 0101
‘move value from memory to AX register’ on 386

– different for each CPU type

15

• Assembly Language
– CPU instructions represented by mnemonics

Ex: MOV AX, M same as above

– each AL instruction converts to one ML instruction by
assembler program

– Efficient fast execution, inconvenient to program in

– Allows access to instructions not available with higher
level language

Programming (3)

• High Level Language, e.g. C/C++
– easier to use

– it’s compiler’s job to translates (one) HLL instruction
into (many) ML instructions

– portable: can compile the same source (HLL
instructions) on different OS platforms

16

instructions) on different OS platforms

– slower and more restricted

• Interpreted Languages, e.g. JAVA, scripting
– on-the-fly translation of high level language

– slowest of the above, but often a good place to start
with a new project

µ-processor: registers

EAX

EBX

32-bit General-Purpose Registers

EBP

ESP

Storage locations inside the CPU, optimized for speed.

17

CS

SS

DS

ES

EIP

EFLAGS

16-bit Segment Registers

ECX

EDX

FS

GS

ESI

EDI

Control registers

µ-processor: registers (2)
• General Purpose Registers: used to contain arithmetic
and logical operands used by ALU
• Segment Registers: indicate segments of memory
currently in use.

– CS: (code segment) memory segment where
instructions/program are located

– DS: (data segment) …

18

– DS: (data segment) …
– SS: (stack segment) …
– ES: (extra segment) …

• Pointer & Index Registers:
– BP: base pointer
– SP: stack pointer
– SI: source index
– DI: destination index

complete address =

segment +

pointer/index

• Control Registers:

– IP/IR: instruction pointer held in instruction register

(memory address of next instruction to be executed)

– FLAGS: status and control flags; used to indicate

processor status

µ-processor: registers (3)

19

o i s z p c
11 10 9 8 7 6 5 4 3 2 1 0

c = 1: if operand produced carry

p = 1: if operand has parity of 1

z = 1: if result = 0

s = 1: if result < 0

i = 1: µ-processor will respond to interrupts

o = 1: if result produced overflow

• Fetch the next instruction (address is held in instruction

pointer / register); instruction pointer is incremented to the

next value or branched, conditional statements may throw it

elsewhere

µ-processor instruction cycle

20

• Decode: what do 1’s and 0’s mean?

• Execute: the instruction

• Data Transfer:

MOV d,s move (s)ource to (d)estination

• Arithmetic:

ADD d,s add s to d and store it in d

INC d increment contents of d by 1

• Logical and Shifts:

some basic assembler instructions

21

• Logical and Shifts:

AND d,s bitwise AND of s with d, store in d

SHL d shift d left one bit

• Control Transfer:

JMP loc jump to memory location loc

JE loc jump to loc if result of last operation = 0

• I/O:

OUT d,s output to the I/O space (address d)

Location of the operand of an instruction may be obtained:
• Immediate: e.g. 200 (hex!)

Operand contained in 2nd part of the instruction
• Register: e.g. BX

Operand is contained in one of the general registers
• Direct: e.g. [200]

Addressing modes

22

• Direct: e.g. [200]
Operand’s address is contained in the 2nd part of the instr.

• Register indirect: e.g. [BX]
Operand’s address is contained in one of the general
pointers or pointer/index registers

• Indexed: e.g. [BX+1]
Operand’s address is formed by adding displacement
contained in 2nd part of the instr. to the contents of one of
the index registers

Addr. ML AL Meaning

Assembler example

100 BB 00 02 MOV BX,200 BX ← 200h (load addr.)

103 8A 2F MOV CH,[BX] CH ← value at loc 200h

105 8A 4F 01 MOV CL,[BX+1] CL ← value at loc 201h

108 88 0F MOV [BX],CL loc 200h ← CL

10A 88 6F 01 MOV [BX+1],CH loc 201h ← CH

opcode lo hi

23

10A 88 6F 01 MOV [BX+1],CH loc 201h ← CH

10D CD 20 INT 20 software interrupt (exit)

Location Value before Value after

200 A1 B2

201 B2 A1

202 ? ?

The program swaps values in locations 200 and 201

I/O devices usually have their own registers which are
assigned or mapped to addresses in memory

I/O is achieved by µ-processor reading from / writing to the
corresponding memory addresses

Input/Outputs

24

Ex: I/O user port used in the lab this week has 8 registers at
addresses 2A0H → 2A7H. Used to control ADC, DAC and
digital I/O functions of the port.

• Provides a level of abstraction and security for higher level

applications; interrupts, memory handling, etc.

• I/O are privileged operations, usually only OS can do I/O

• A device driver is provided, which runs as part of the OS

• User’s program then communicates to the device through

Operating System

25

• User’s program then communicates to the device through

the driver and OS

• Most OS can run multiple programs at the same time.

• Multiple threads of execution within the same program.

• Scheduler utility assigns a given amount of CPU time to

each running program.

• Rapid switching of tasks gives illusion that all programs are

running at once

OS: multitasking

26

running at once

• The processor must support task switching

• Scheduling policy, priority, etc.

Used for handling peripheral I/O asynchronously (orders of

magnitude differences in time required for access,

enable/disable, read/write, etc.)

Device requiring services asserts Interrupt Request.

When INTR asserted:

µ

Interrupts

27

• µ-processor completes execution of current instruction

• IP/IR & other registers pushed onto stack

• IP/IR loaded with address of interrupt routine

• interrupt routine executed to identify and service the

device

• when completed, IP & registers popped from stack, and

program execution resumes

General purpose OS systems such as Linux, Windows, Mac

OS do not guarantee ‘real-time’ execution of instructions

i.e. they don’t necessarily have any operational deadlines

from event to system response

e.g. various interrupts, multitasking, etc. are usually

Real Time Operating Systems

28

handled with the illusion of smooth running for a casual

user, but the behavior is not deterministic

Multitasking operating systems are available that provide

tools to ensure that certain deadlines from event to system

response are met.

Examples: VxWorks (Wind River) – used on Mars rovers

RTLinux, RTEMS (o.source)

Signal encryption using a sequence of pseudo-random

numbers

• Uses linear feedback shift registers (LFSR) to generate a

sequence of pseudo-random numbers (deterministic sequence

that looks random)

LTspice experiment 11.1

29

• If LFSR has N bits, the max sequence will be 2N – 1 long,

then repeats

• E.g. 8-bit LFSR can produce 255 long sequence, 32-bit

LFSR can produce 4,294,967,295 pseudo-random sequence

• XOR gates are used to tap certain outputs into the serial

input (see the table in the Supplement)

Pseudo-random number generator

• 8-bit pseudo-random generator

30

• Output random number is (Q7Q6Q5Q4Q3Q2Q1Q0)2

• At least one Qi bit must be non-zero initially for non-trivial (other

than always 0’s) pattern

• The initial state of Qi bits is known as seed, which uniquely defines

the sequence of pseudo-random numbers

Encrypting/decrypting

• To encrypt scramble the stream of data bits with pseudo-random

sequence:

ENi = Ai ⊕ PRi

encrypted bit P-random bit

31

• How to decrypt?

Ai = ENi ⊕ PRi

• Need the same unique sequence of pseudo-random numbers used

for encryption (seed becomes encryption/decryption password).

Information bit

• Implement pseudo-random number generator

• Decrypt an encrypted 8-bit data stream

• Perform digital-to-analog conversion and plot a parametric

curve (x(t), y(t)) to display the secret message

LTspice experiment 11.1

32

