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— Quantum excitation ~

‘Quantum excitation’ in accelerator physics refers to diffusion of
phase space (momentum) of €~ due to recoil from emitted photons.

Because radiated power scales as o y* and critical photon energy
(divides synchrotron radiation spectral power into two equal halves)

as oy, the effect becomes important at high energies (typically > 3
GeV).

Here we consider incoherent synchrotron radiation primarily (A <<
G, so that the radiation power scales linearly with the number of
electrons). When radiation wavelength becomes comparable with
the bunch length (or density modulation size), radiated power
becomes quadratic with peak current. This coherent synchrotron
radiation (CSR) effects can be important at all energies when bunch
length becomes 1s sufficiently short.
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~— Circular trajectory in the “rest” frame

\

< —
Lorentz back-transform 4-vector (@/c, k)
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~— Coherent radiation from a bend magnet
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~— CSR scaling, longitudinal and transverse etfect
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~— Recoil due to photon emission

Photon emission takes place in forward direction within a very
small cone (~ 1/y opening angle). Therefore, to 1t order, photon
removes momentum in the direction of propagation of electron,
leaving position and divergence of the electron intact at the point of
emission.
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~— Energy spread

Synchrotron radiation is a stochastic process. Probability
distribution of the number of photons emitted by a single electron 1s
described by Poisson distribution, and by Gaussian distribution in
the approximation of large number of photons.

If emitting (on average) N, photons = random walk
with energy E , random walk growth

of energy spread from its mean 1s

2 2
o —NphEph

If photons are emitted with spectral "
distribution N, (E ), thenone has to = — w555 o
integrate:

o; = |E},N(E,,)dE,,
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~— Spectrum ot synchrotron radiation from bends —

Photon emission (primarily) takes place in deflecting magnetic field
(dipole bend magnets, undulators and wigglers). Spectrum of
synchrotron radiation from bends 1s well known (per unit deflecting
angle):
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~— Energy spread from bends ~

ds
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For constant bending radius p and total bend angle ® (® = 27 for a
ring) energy spread becomes:
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~— Energy spread from planar undulator ~

oy =|E,N(E,)dE,, =~ N &,

. he 2y’ E*(GeV®
Photon in fundamental ¢, = . 3/ ~  £,(eV)=950 (S 1 ) 3
),p (1+1K7) ),p(cm)(1+5K )
2 2172 2 2 2
Radiated energy / e~ E, = ail rij K2 L E (eV)=725 £ (?ev 2)K L, (m)
34, mc A, (cm”)
. . E K*(1+1K?
Naively, one can estimate N, = 2 =0.763 d+; K7 L (m)
£, A, (cm)
2 2 2 2
% 74002 8VIR ) )
E A (ecm”)(1+5K7)
\_ CORNELL y,

TN T Y E E 5 T'T ¥

C H E S S / L E P P USPAS 2005 Recirculated and Energy Recovered Linacs 11



~— Energy spread from planar undulator (contd.) —

In reality, undulator spectrum is .
more complicated with harmonic
content for K = 1 and Doppler red
shift for off-axis emission.

More rigorous treatment gives

2 2 2 2 “o; 05 1 15 2 25 -- ;
Or . 48.108 2 OV IR LRy iy W/,
E A, (cm”)

with F(K)=1.2K +(1+1.33K +0.4K?*)""
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~— Emittance growth

Consider motion:
X=X, +7 AE , - , AE
= S X =X S
R p L

where x, =a /B, (s)e"

As discussed earlier, emission of a photon leads to:

E E
ox=0=0dx; +1, gh Oy =-1, gh
E E
ox'=0=dxj +1, gh oxy =1, gh

changing the phase space ellipse a; =7,x; +20t,x,x5 + B, x5
2

<5a2> = Eph H (S) = 2 ’ 2
N s here H =y mn.+2ann.+B0n.
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~— Emittance growth in bend

or =((a VB ) =2,
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— H-function

As we have seen, lattice function H in dipoles (1/p # 0) matters
for low emittance.

In the stmplest achromatic cell (two 1dentical dipole magnets with
lens in between), dispersion 1s defined in the bends. One can show
that an optimum Twiss parameters (o, ) exist that minimize(H )

A A
VA J IRy

Such optimized double bend achromat 1s known as a Chasman
Green lattice, and H 1s given by

po’
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~— Example of triple bend achromat
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~— Emittance and energy spread in % CESR
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~— Emittance growth in undulator

with energy spread o /E calculated earlier.
1
(H) = j(ﬁn’z +2ann’+yn?)ds
u 0
For sinusoidal undulator field B(s) =B, cosk,s with k, =27/A,
: : : : : ,» 1 1
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0
with p, = kLK
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— Emittance growth in undulator (contd.) ~

r-tunction
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Unless undulator 1s placed in high dispersion region,

& CORNELL contribution to emittance remains small. j
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