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Quantum excitation

‘Quantum excitation’ in accelerator physics refers to diffusion of 

phase space (momentum) of e– due to recoil from emitted photons.

Because radiated power scales as ∝ γ4 and critical photon energy 

(divides synchrotron radiation spectral power into two equal halves) 

as ∝ γ3 , the effect becomes important at high energies (typically ≥ 3 

GeV).

Here we consider incoherent synchrotron radiation primarily (λ << 

σz, so that the radiation power scales linearly with the number of

electrons). When radiation wavelength becomes comparable with 

the bunch length (or density modulation size), radiated power 

becomes quadratic with peak current. This coherent synchrotron 

radiation (CSR) effects can be important at all energies when bunch 

length becomes is sufficiently short.
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Circular trajectory in the “rest” frame

Lorentz back-transform 4-vector ),( kc
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Coherent radiation from a bend magnet 
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CSR scaling, longitudinal and transverse effect
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Recoil due to photon emission

hν

ecB

Eβ
ρ =

ecB

hνβ
ρ −

Photon emission takes place in forward direction within a very 

small cone (~ 1/γ opening angle). Therefore, to 1st order, photon 

removes momentum in the direction of propagation of electron, 

leaving position and divergence of the electron intact at the point of 

emission. 



USPAS 2005 Recirculated and Energy Recovered Linacs 8&+(66���/(33&+(66���/(33

Energy spread

Synchrotron radiation is a stochastic process. Probability 

distribution of the number of photons emitted by a single electron is 

described by Poisson distribution, and by Gaussian distribution in 

the approximation of large number of photons.

If emitting (on average) Nph photons

with energy Eph, random walk growth

of energy spread from its mean is 

If photons are emitted with spectral

distribution Nph(Eph), then one has to

integrate:

22

phphE EN=σ

random walk

∫= phphphE dEENE )(22σ
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Spectrum of synchrotron radiation from bends

Photon emission (primarily) takes place in deflecting magnetic field 

(dipole bend magnets, undulators and wigglers). Spectrum of 

synchrotron radiation from bends is well known (per unit deflecting 

angle):
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Energy spread from bends
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Energy spread from planar undulator
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Energy spread from planar undulator (contd.)
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In reality, undulator spectrum is 

more complicated with harmonic 

content for K ≥ 1 and Doppler red 

shift for off-axis emission.
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Emittance growth

Consider motion:

where

As discussed earlier, emission of a photon leads to: 

changing  the phase space ellipse
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Emittance growth in bend
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H-function

As we have seen, lattice function H in dipoles (1/ρ ≠ 0) matters 

for low emittance.

In the simplest achromatic cell (two identical dipole magnets with 

lens in between), dispersion is defined in the bends. One can show 

that an optimum Twiss parameters (α, β) exist that minimize

Such optimized double bend achromat is known as a Chasman 

Green lattice, and H is given by
3

154
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Example of triple bend achromat

mm 6.3=H

mm 1.9=H

mm 66.0≈
−GC

H

4×3°-bends
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Emittance and energy spread in ¼ CESR

energy = 5 GeV

large dispersion 

section for bunch 

compression
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Emittance growth in undulator
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Emittance growth in undulator (contd.)
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Unless undulator is placed in high dispersion region, 

contribution to emittance remains small.


