
1) Thermal emission is a process in which the thermal energy provides non-zero density 

of electrons at energies larger than the potential barrier allowing them to escape. The 

current density associated with this process can be written as 
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dEEn )(  is density of electrons per unit volume, )(Evz  is velocity distribution along z-

component (perpendicular to the surface). The integral is evaluated for energies sufficient 

to escape the barrier, i.e. )(min FWeEE ϕϕ +=≥ . Derive Richardson-Dushman equation 

recalling that 
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Solution: 

Using the fact that )(
2
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zyx vvvmmvE ++==  and zyx dvdvdvd →νπν 24 , rewrite 

current density 

 

∫∫∫
∞

−
∞

∞−

−
∞

∞−

−

=

min,

222

222
3

32

z

zyxF

v

zz
kT

mv

y
kT

mv

x
kT

mv

kT

e

z dvvedvedvee
h

em
J

ϕ

 

 

here )(
2

2

WF
z e

mv
ϕϕ +≥ .  Using adxe ax /

2

π=∫
∞

∞−

−  and 
a

e
dxxe

ax
ax

2

2

2
−

− −=∫  we get 

 

kT

ekT

mv

kT

e

z

W

z

F

eT
h

kem

kTm

e

m

kT
e

h

em
J

ϕϕ ππ
−

−

== 2

3

22

3

3 4

/

22

2
min,

 



2) a) Derive Child-Langmuir formula. b) For initial tests with Cornell ERL gun it is 

planned to use a CW laser to investigate the photocathode lifetime issues. Gun power 

supply will be limited to 300 kV for these tests. Estimate illuminated laser spot size 

required to produce 100 mA average current. Assume a planar diode geometry and 5 cm 

cathode-anode gap. 

 

Solution: 

a) We assume one-dimensional problem. Potential satisfies Poisson equation 
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Current density and charge density are related by zz vJ ρ= , while the velocity is found 

through energy conservation 
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Eliminating ρ  and zv , Poisson distribution is rewritten as 
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First, we need to determine if zJ  depends on the coordinate. From charge conservation 

we have 
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thus, constJ z =  in steady state ( 0/ =∂∂ tρ ). Therefore, one solves the differential 

equation for V .  Use sample solution BAzzV =)(  (note that 0)0( =V , and 

0/)0( =−= zEdzdV , or field at the cathode vanishes, just like Child law argues), 

substituting and solving for constants yields 
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b) Answer: 0.65 mm
2
. 



3) In computer simulations of the space charge inside the bunch, one uses 

‘macroparticles’ with the same charge to mass ratio to reduce the required computational 

resources. Discuss what happens to simulated beam’s Debye length and plasma 

frequency as opposed to real case scenario. In this respect, what artificial effects may be 

introduced in simulations? 

 

Solution: 

Plasma frequency is given by 
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with q  and m  being (macro)particle’s charge and mass. ‘Macroparticles’ are chosen to 

have the total charge equal to the actual value Q , therefore the particle density qQn /∝ , 

and mqp /∝ω . Plasma frequency of simulated distribution is the same as in the actual 

beam. 

 

Debye length is defined as 
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Because the velocities of ‘macroparticles’ are the same as for the actual particles, it 

follows that Debye length in simulated bunch is identical to the actual beam. What is 

different in simulated vs. actual case? The number of particles in the Debye sphere is 

smaller in the simulated bunch (or, equivalently, inter-particle distance is larger than in 

the actual beam). It follows from slide 6 in the lecture, that ‘graininess’ of Coulomb 

forces become more significant in this case, and, therefore, fields of individual particles 

tend to be overemphasized. 


