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Outline

• What are Topological Insulators?  

• Two important examples in 2 spatial 
dimensions:   IQHE and Quantum Spin Hall 
Effect.  

• Classification in any spatial dimension. The 
Periodic Table.   

•  New Topological Insulators in 2 dimensions.

•  Role of interactions in 2d:  New Luttinger L’s.

3
Friday, August 24, 2012



What are Topological Insulators?

• Band insulators with a gap with special 
topological properties.

• Bulk wave functions have a topological 
invariant.  

• This leads to gapless states on the boundary 
that are robust,  i.e. protected against 
scattering with impurities, localization, etc. 

• Illustrate with 2 important examples in 2 
dimensions:   IQHE,  QSHE.   
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Integer Quantum Hall Effect

5

2-dimensional electron gas in a 
perpendicular magnetic field:

B into page breaks
time reversal symmetry

Hall conductivity is quantized:  σxy = N e2/h
   N  is an integer to 1 part in 109 ! 
 
Why?   N right-moving edge modes.  

N right-moving 
edge modes

material
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FIG. 2 The interface between a quantum Hall state and an

insulator has chiral edge mode. (a) depicts the skipping cy-

clotron orbits. (b) shows the electronic structure of a semi

infinite strip described by the Haldane model. A single edge

state connects the valence band to the conduction band.

with E(qx) = �vF qx. This band of states intersects the
Fermi energy EF with a positive group velocity dE/dqx =
�vF and defines a right moving chiral edge mode.

In the 1980’s related ideas were applied to narrow
gap semiconductors, which can be modeled using a 3D
massive Dirac Hamiltonian(Volkov and Pankratov, 1985;
Fradkin, Dagotto and Boyanovsky, 1986). An interface
where the Dirac mass changes sign is associated with gap-
less 2D Dirac fermion states. These share some similari-
ties with the surface states of a 3D topological insulator,
but as we shall see in section IV.A, there is a funda-
mental difference. In a separate development, Kaplan
(1992) showed that in lattice quantum chromodynamics
4D chiral fermions could be simulated on a 5D lattice
by introducing a similar domain wall. This provided a
method for circumventing the doubling theorem(Nielssen
and Ninomiya, 1983), which prevented the simulation of
chiral fermions on a 4D lattice. Quantum Hall edge states
and surface states of a topological insulator evade similar
doubling theorems.

The chiral edge states in the quantum Hall effect can
be seen explicitly by solving the Haldane model in a semi-
infinite geometry with an edge at y = 0. Fig. 2(b) shows
the energy levels as a function of the momentum kx along
the edge. The solid regions show the bulk conduction and
valence bands, which form continuum states and show
the energy gap near K and K�. A single band, describing
states bound to the edge connects the valence band to the
conduction band with a positive group velocity.

By changing the Hamiltonian near the surface the dis-
persion of the edge states can be modified. For instance,
E(qx) could develop a kink so that the edge states inter-
sect EF three times – twice with a positive group velocity
and once with a negative group velocity. The difference
NR − NL between the number of right and left moving
modes, however, can not change, and is determined by
the topological structure of the bulk states. This is sum-
marized by the bulk-boundary correspondence:

NR −NL = ∆n, (7)

where ∆n is the difference in the Chern number across
the interface.
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FIG. 3 Electronic dispersion between two boundary Kramers

degenerate points Γa = 0 and Γb = π/a. In (a) the num-

ber of surface states crossing the Fermi energy EF is even,

whereas in (b) it is odd. An odd number of crossings leads to

topologically protected metallic boundary states.

C. Z2 topological insulator

Since the Hall conductivity is odd under T , the topo-
logically non trivial states described in the preceding sec-
tion can only occur when T symmetry is broken. How-
ever, the spin orbit interaction allows a different topolog-
ical class of insulating band structures when T symmetry
is unbroken (Kane and Mele, 2005a). The key to under-
standing this new topological class is to examine the role
of T symmetry for spin 1/2 particles.
T symmetry is represented by an antiunitary operator

Θ = exp(iπSy/�)K, where Sy is the spin operator and
K is complex conjugation. For spin 1/2 electrons, Θ has
the property Θ2 = −1. This leads to an important con-
straint, known as Kramers’ theorem, that all eigenstates
of a T invariant Hamiltonian are at least twofold de-
generate. This follows because if a non degenerate state
|χ� existed then Θ|χ� = c|χ� for some constant c. This
would mean Θ2|χ� = |c|2|χ�, which is not allowed be-
cause |c|2 �= −1. In the absence of spin orbit interac-
tions, Kramers’ degeneracy is simply the degeneracy be-
tween up and down spins. In the presence of spin orbit
interactions, however, it has nontrivial consequences.
A T invariant Bloch Hamiltonian must satisfy

ΘH(k)Θ−1 = H(−k). (8)

One can classify the equivalence classes of Hamiltonians
satisfying this constraint that can be smoothly deformed
without closing the energy gap. The TKNN invariant is
n = 0, but there is an additional invariant with two pos-
sible values ν = 0 or 1 (Kane and Mele, 2005b). The fact
that there are two topological classes can be understood
by appealing to the bulk-boundary correspondence.
In Fig. 3 we show plots analogous to Fig. 2 showing the

electronic states associated with the edge of a T invariant
2D insulator as a function of the crystal momentum along
the edge. Only half of the Brillouin zone 0 < kx < π/a is
shown because T symmetry requires that the other half
−π/a < k < 0 is a mirror image. As in Fig. 2, the shaded
regions depict the bulk conduction and valence bands
separated by an energy gap. Depending on the details
of the Hamiltonian near the edge there may or may not
be states bound to the edge inside the gap. If they are

Generalized viewpoint:  
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Fermi energy EF with a positive group velocity dE/dqx =
�vF and defines a right moving chiral edge mode.
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gap semiconductors, which can be modeled using a 3D
massive Dirac Hamiltonian(Volkov and Pankratov, 1985;
Fradkin, Dagotto and Boyanovsky, 1986). An interface
where the Dirac mass changes sign is associated with gap-
less 2D Dirac fermion states. These share some similari-
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but as we shall see in section IV.A, there is a funda-
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method for circumventing the doubling theorem(Nielssen
and Ninomiya, 1983), which prevented the simulation of
chiral fermions on a 4D lattice. Quantum Hall edge states
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doubling theorems.

The chiral edge states in the quantum Hall effect can
be seen explicitly by solving the Haldane model in a semi-
infinite geometry with an edge at y = 0. Fig. 2(b) shows
the energy levels as a function of the momentum kx along
the edge. The solid regions show the bulk conduction and
valence bands, which form continuum states and show
the energy gap near K and K�. A single band, describing
states bound to the edge connects the valence band to the
conduction band with a positive group velocity.

By changing the Hamiltonian near the surface the dis-
persion of the edge states can be modified. For instance,
E(qx) could develop a kink so that the edge states inter-
sect EF three times – twice with a positive group velocity
and once with a negative group velocity. The difference
NR − NL between the number of right and left moving
modes, however, can not change, and is determined by
the topological structure of the bulk states. This is sum-
marized by the bulk-boundary correspondence:
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C. Z2 topological insulator

Since the Hall conductivity is odd under T , the topo-
logically non trivial states described in the preceding sec-
tion can only occur when T symmetry is broken. How-
ever, the spin orbit interaction allows a different topolog-
ical class of insulating band structures when T symmetry
is unbroken (Kane and Mele, 2005a). The key to under-
standing this new topological class is to examine the role
of T symmetry for spin 1/2 particles.
T symmetry is represented by an antiunitary operator

Θ = exp(iπSy/�)K, where Sy is the spin operator and
K is complex conjugation. For spin 1/2 electrons, Θ has
the property Θ2 = −1. This leads to an important con-
straint, known as Kramers’ theorem, that all eigenstates
of a T invariant Hamiltonian are at least twofold de-
generate. This follows because if a non degenerate state
|χ� existed then Θ|χ� = c|χ� for some constant c. This
would mean Θ2|χ� = |c|2|χ�, which is not allowed be-
cause |c|2 �= −1. In the absence of spin orbit interac-
tions, Kramers’ degeneracy is simply the degeneracy be-
tween up and down spins. In the presence of spin orbit
interactions, however, it has nontrivial consequences.
A T invariant Bloch Hamiltonian must satisfy

ΘH(k)Θ−1 = H(−k). (8)

One can classify the equivalence classes of Hamiltonians
satisfying this constraint that can be smoothly deformed
without closing the energy gap. The TKNN invariant is
n = 0, but there is an additional invariant with two pos-
sible values ν = 0 or 1 (Kane and Mele, 2005b). The fact
that there are two topological classes can be understood
by appealing to the bulk-boundary correspondence.
In Fig. 3 we show plots analogous to Fig. 2 showing the

electronic states associated with the edge of a T invariant
2D insulator as a function of the crystal momentum along
the edge. Only half of the Brillouin zone 0 < kx < π/a is
shown because T symmetry requires that the other half
−π/a < k < 0 is a mirror image. As in Fig. 2, the shaded
regions depict the bulk conduction and valence bands
separated by an energy gap. Depending on the details
of the Hamiltonian near the edge there may or may not
be states bound to the edge inside the gap. If they are
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The BULK topological invariant

7

example of topology:  you cannot smoothly deform a 
caju into a donut:

number of holes = Euler invariant
=integral over surface  of some function. 

smooth deformations:

= =

==
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The bulk topological invariant....

8

Bulk wavefunctions           have analogous 
topological properties (TKNN invariant): 

TEX for keynote

|u(k)�

A = i�u(k)|∇k|u(k)�

N =
1

2π

�
d2k ∇×A

1

TEX for keynote

|u(k)�

A = i�u(k)|∇k|u(k)�

N =
1

2π

�
d2k ∇×A

1

=  integer = Chern #

=  number of chiral edge modes

We have holography:   bulk/boundary correspondence.  
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Quantum Spin Hall
• the first new realization of a topological 

insulator.  (Kane-Mele).  Top. inv. is Z2 

• Preserves time-reversal symmetry, spin orbit 
coupling plays the role of magnetic field.

• Physical realization in HgCdTe quantum 
wells.  

9

Due to T-reversal, there 
are now both left and 
right moving edge 
states,  but momentum 
is locked with spin.

(no B field)
Friday, August 24, 2012



Classification of  TI’s
• IQHE and QSHE differ in their time-reversal 

symmetries,  and this is the main distinction.

• One can also consider particle-hole 
symmetry (for superconductors).  

• Two approaches, one based on  K-theory 
(Kitaev), the other on the existence of 
topological invariants (Ryu et. al.), both 
predict 5 classes of TI in any dimension.  

• Our work:  holographic approach,  i.e. 
classification of symmetry protected zero 
modes on the boundary (Bernard,Kim,AL). 
Not necessarily equivalent. 10
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The 10 symmetry classes

11

Under time reversal (T), particle-hole (C) and 
chirality (P), the hamiltonian transforms as: chirality (P)[14]. These discrete symmetries are defined to act as follows on a first-

quantized hamiltonian H:

T : TH∗T † = H

C : CH
TC† = −H (1)

P : PHP † = −H

with TT † = CC† = PP † = 1, and HT denotes the transpose of H. In our classifica-

tion, two hamiltonians H,H� related by a unitary transformation H� = UHU † are in

the same class, since they have the same eigenvalues. For C and T , this translates

to C → C � = UCUT and T → T � = UTUT . For P , the unitary transformation is

P → P � = UPU †. In the sequel, we will refer to these unitary transformations as

gauge transformations.

For hermitian hamiltonians, HT = H∗, thus, up to a sign, C and T symmetries are

the same. We focus then on these symmetries involving the transpose: THTT † = H

and CHTC† = −H. Taking the transpose of this relation, one finds there are two

consistent possibilities: T T = �tT and CT = �cC, where �t,c = ±1, which are gauge-

invariant relations. The various classes are thus distinguished by �t = ±1, ∅ and

�c = ±1, ∅, where ∅ indicates that the hamiltonian does not have the symmetry. (In

some literature, T,C are chosen to be real, unitarity implies T 2 = �t, C2 = �c, and

this sign of the square characterizes the classes; however this is not a gauge-invariant

statement.) One obtains 9 = 3× 3 classes just by considering the 3 cases for T and

C. If the hamiltonian has both T and C symmetry, then it automatically has a P

symmetry, with P = TC† up to a phase. If there is neither T nor C symmetry,

then there are two choices P = ∅, 1, and this gives the additional class AIII, leading

to a total of 10. Their properties are shown in Table I. We also mention that

one normally requires P 2 = 1. Below, we will require T and C to commute, thus

P 2 = T 2C†2 = ±1. However one has the freedom P → iP to restore P 2 = 1. In the
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4

For hermitian H,               , and we work with 
the transpose.
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Notation BDI etc. goes back to Cartan’s classification of symmetric 
spaces.

AZ-classes T C P

A ∅ ∅ ∅

AIII ∅ ∅ 1

AII −1 ∅ ∅

AI +1 ∅ ∅

C ∅ −1 ∅

D ∅ +1 ∅

BDI +1 +1 1

DIII −1 +1 1

CII −1 −1 1

CI +1 −1 1

TABLE I: The 10 Altland-Zirnbauer (AZ) hamiltonian classes. The ± signs refer to T T =

±T and CT = ±C, whereas ∅ denotes non-existence of the symmetry.

sequel, in the cases with both T,C symmetry, we simply define P = TC†, up to a

phase.

III. FORMULATION IN TERMS OF CLIFFORD ALGEBRAS

Let d denote the spatial dimension and d = d− 1 the dimension of the boundary.

On the boundary, we assume a first quantized Dirac hamiltonian of the form:

H = −i
d�

a=1

γa
∂

∂xa
+M (2)

where xa are coordinates on the boundary and γa,M are matrices. In momentum

space k, in order for the hamiltonian to satisfy H2 = k2 + M2, and have a single

5

AZ-classes T C P

A ∅ ∅ ∅

AIII ∅ ∅ 1

AII −1 ∅ ∅

AI +1 ∅ ∅

C ∅ −1 ∅

D ∅ +1 ∅

BDI +1 +1 1

DIII −1 +1 1

CII −1 −1 1

CI +1 −1 1

TABLE I: The 10 Altland-Zirnbauer (AZ) hamiltonian classes. The ± signs refer to T T =

±T and CT = ±C, whereas ∅ denotes non-existence of the symmetry.

sequel, in the cases with both T,C symmetry, we simply define P = TC†, up to a

phase.

III. FORMULATION IN TERMS OF CLIFFORD ALGEBRAS

Let d denote the spatial dimension and d = d− 1 the dimension of the boundary.

On the boundary, we assume a first quantized Dirac hamiltonian of the form:

H = −i
d�

a=1

γa
∂

∂xa
+M (2)

where xa are coordinates on the boundary and γa,M are matrices. In momentum

space k, in order for the hamiltonian to satisfy H2 = k2 + M2, and have a single

5
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Principles of Classification

• Assume the boundary theory is first order in 
derivatives (Dirac).  This can give a spectrum 
E2  = k2 + M2  which is gapless if M=0. 

• Classify zero modes of M according T,C,P 
and spatial dimension d. 

• A well-posed mathematical problem,  solved 
using generic properties of Clifford algebras.

13
Friday, August 24, 2012



14

particle energy spectrum E = ±
√
k2 +M2, the γa, a = 1, .., d, must satisfy a Clifford

algebra, and M must anti-commute with all γa in order for the cross terms in H2 to

vanish:

{γa, γb} = 2δab; {γa,M} = 0, ∀a (3)

Thus up to rescaling of M , the set {γa,M} form a Clifford algebra. (The explicit

form of M will be given below, where in general it will be an element of a Clifford

algebra times a constant or tensored with an additional space.)

The conditions for P,T,C symmetry are the following ∀a: :

P : {P, γa} = 0, {P,M} = 0 (4)

T : TγT
a = −γaT, TMT = MT (5)

C : CγT
a = γaC, CMT = −MC (6)

The way these conditions are implemented is that one constructs P, T, C satisfying

the first condition in each of the above cases, which is the most stringent, and then

checks whether the second condition on M is satisfied.

IV. CLIFFORD ALGEBRA REPRESENTATION

In this section we describe an explicit representation of the Clifford algebra which

we will utilize. A Clifford algebra is constructed from N basis elements Γa, a =

1, 2, ....N , satisfying the relations:

{Γa,Γb} = 2δab (7)

We will refer to the algebra generated by linear combinations of products of the Γa’s

as the enveloping algebra of the Clifford algebra. (In the mathematics literature,

this enveloping algebra is simply referred to as the Clifford algebra.) The degree of

6
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To obtain Dirac spectrum:
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Dirac hamiltonian:
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Clifford algebra representation
on a 2n dimensional vector space

15

particle energy spectrum E = ±
√
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a monomial in the Γ’s is the minimal number of factors subject to the relations (7).

Using the above relations of the basis elements, the maximal degree of an element

of the enveloping algebra is N and the dimension of the enveloping algebra, i.e. the

number of independent monomials, is 2N .

Clifford algebras were classified abstractly by Cartan. They can all be realized

as matrix algebras over the real or complex numbers, or quaternions, and possesses

an 8-fold periodicity in the dimension of the basis. For our purposes, it is more

useful to work with an explicit representation. For N = 2n + 1 an odd integer, we

can construct a representation of the N basis elements on a 2n dimensional space in

terms of an n-fold tensor product of Pauli matrices:

Γ1 = σy ⊗ σz ⊗ σz ⊗ · · · ⊗ σz

Γ2 = σx ⊗ σz ⊗ σz ⊗ · · · ⊗ σz

Γ3 = 1 ⊗ σy ⊗ σz ⊗ · · · ⊗ σz

Γ4 = 1 ⊗ σx ⊗ σz ⊗ · · · ⊗ σz

: (8)

Γ2n−1 = 1 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ σy

Γ2n = 1 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ σx

Γ2n+1 = σz ⊗ σz ⊗ · · · ⊗ σz ⊗ σz

where σz = ( 1 0
0 −1 ), σx = ( 0 1

1 0 ), and σy = ( 0 −i
i 0 ). Note that all Γa are hermitian and

that Γ1Γ2 · · ·Γ2n+1 is proportional to the identity. The matrices Mab = [Γa,Γb] /4i

comprise the Lie algebra for the irreducible spinor representation of SO(2n+1). The

a index of Γa transforms as the vector representation of SO(2n+ 1).

Since the transpose is an anti-automorphism of the Clifford algebra, and an invo-

7

σ = Pauli matrices
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The hamiltonian:
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AZ-classes T C P

A ∅ ∅ ∅

AIII ∅ ∅ 1

AII −1 ∅ ∅

AI +1 ∅ ∅

C ∅ −1 ∅

D ∅ +1 ∅

BDI +1 +1 1

DIII −1 +1 1

CII −1 −1 1

CI +1 −1 1

TABLE I: The 10 Altland-Zirnbauer (AZ) hamiltonian classes. The ± signs refer to T T =

±T and CT = ±C, whereas ∅ denotes non-existence of the symmetry.

sequel, in the cases with both T,C symmetry, we simply define P = TC†, up to a

phase.

III. FORMULATION IN TERMS OF CLIFFORD ALGEBRAS

Let d denote the spatial dimension and d = d− 1 the dimension of the boundary.

On the boundary, we assume a first quantized Dirac hamiltonian of the form:

H = −i
d�

a=1

γa
∂

∂xa
+M (2)

where xa are coordinates on the boundary and γa,M are matrices. In momentum

space k, in order for the hamiltonian to satisfy H2 = k2 + M2, and have a single

5

AZ-classes T C P

A ∅ ∅ ∅

AIII ∅ ∅ 1

AII −1 ∅ ∅

AI +1 ∅ ∅

C ∅ −1 ∅

D ∅ +1 ∅

BDI +1 +1 1

DIII −1 +1 1

CII −1 −1 1

CI +1 −1 1

TABLE I: The 10 Altland-Zirnbauer (AZ) hamiltonian classes. The ± signs refer to T T =

±T and CT = ±C, whereas ∅ denotes non-existence of the symmetry.

sequel, in the cases with both T,C symmetry, we simply define P = TC†, up to a

phase.

III. FORMULATION IN TERMS OF CLIFFORD ALGEBRAS

Let d denote the spatial dimension and d = d− 1 the dimension of the boundary.

On the boundary, we assume a first quantized Dirac hamiltonian of the form:

H = −i
d�

a=1

γa
∂

∂xa
+M (2)

where xa are coordinates on the boundary and γa,M are matrices. In momentum

space k, in order for the hamiltonian to satisfy H2 = k2 + M2, and have a single

5

Dirac hamiltonian:

For d odd:

We find that in a given dimension d, there is a unique T,C satisfying the stringent

first condition in (5, 6), which is either G or �G, depending on the spatial dimension.

Which class this symmetry belongs to is determined by the transpose relations (11).

The eight-fold periodicity arises from the even/odd properties of the powers in eq.

(11). Namely, n(n−1)/2 is even for n = 4m, 4m+1 and odd for n = 4m+2, 4m+3,

where m is an integer. On the other hand n(n+1)/2 is even for n = 4m, 4m+3 and

odd for n = 4m + 1, 4m + 2. Finally, in order to obtain all 10 classes, one needs to

tensor in an additional space, as will be explained. We need to distinguish even and

odd dimensions:

A. For d odd

Let d = 2n+1. Without loss of generality one can choose γa = Γa for a = 1, 2, ...2n,

and M = Γ2n+1, since other choices are related by unitary SO(d) rotations. The P

symmetry can be imposed with P = Γ2n+1.

First consider n odd. Then the unique T that satisfies the first condition in eq.

(5) is T = G. When d = 8m+3, i.e. n = 4m+1, then T T = −T . In order to obtain

T symmetry with the other sign in the transpose, one must tensor in an additional

space. Let �τ denote another set of Pauli matrices. Up to unitary transformations,

the additional factor in T is either 1 or iτy[16], since they have opposite sign in the

relation with their transpose. Thus, the other choice for T is T � = iτy⊗G, satisfying

T �T = T �. On the other hand, when n = 4m + 3, i.e. d = 8m + 7, then T T = T

and T �T = −T �. The C symmetry is similar. The solution to the first eqn. in (6) is

C = �G. If d = 8m + 3, then CT = C, whereas if d = 8m + 7, CT = −C. Again, in

order to obtain the other sign in the transpose one needs to consider C � = iτy ⊗ �G.

Next consider n even, i.e. n = 4m or 4m+2, corresponding to d = 8m+1, 8m+5.

The symmetries are realized with T = �G and C = G. For d = 8m + 1, T T = −T
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For d even: 

and CT = C, whereas for d = 8m+ 5, T T = T and CT = −C.

These results can be summarized in the Table II. For a particular dimension d

modulo 8, the table indicates the “primitive” T,C, and the specific sign in their

transpose. In each case, in order to obtain a representative with the opposite sign in

the relation with their transpose, one must use T �, C �, which henceforth will always

denote the primitive T,C tensored with iτy.

B. For d even

Let d = 2n. It turns out one cannot construct a Clifford algebra on a space

smaller than the 2n dimensional space in eq. (8). Thus we take γa = Γa for a =

1 to 2n − 1, and M = MT = Γ2n. The extra matrix Γ2n+1 commutes with all

the SO(2n) generators, thus the 2n dimensional space is irreducible, and in fact

the direct sum of the 2 spinor representations of SO(d). The projectors onto these

two representations are p± = (1 ± Γ2n+1)/2, and we will refer to the projected

representations as being of left or right handed chirality. Again P symmetry can be

imposed with P = Γ2n+1.

The construction of the T, C symmetries is similar to the odd d case. For d = 8m

and 8m+ 4, T = �G and C = G, whereas for d = 8m+ 2, 8m+ 6, they are reversed,

i.e. T = G,C = �G. These results, and the information on their transposes, is

also in Table II. Note that for the classes with both T,C symmetry, P = TC† is

proportional to Γ2n+1, consistent with our previous identification of P .
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Note, for d even there is one unused Γ2n +1 = P 
which leads to “left/right” chirality with the 
projectors:   
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Implementing T, C,P

• In any dimension P = Γ2n+1   

• T and C are elements of the Clifford algebra.

• In any dimension T, C  are either:    

17

lution, then AT = ±A for any monomial in the enveloping algebra. We will need:

ΓT
a = −Γa if a �= 2n + 1 is odd

= Γa if a is even (9)

ΓT
2n+1 = Γ2n+1

In the sequel, the following elements of the Clifford algebra of degree n and n+1

will play a central role in constructing the T,C symmetries:

G = Γ1Γ3Γ5 · · ·Γ2n−1, �G = GΓ2n+1 (10)

Using the transpose properties in eq. (9) and the Clifford algebra relations, one can

show that they satisfy:

GT = (−1)n(n+1)/2G, �GT = (−1)n(n−1)/2 �G (11)

We will also need:

GΓ2n+1 = (−1)nΓ2n+1G, �GΓ2n+1 = (−1)nΓ2n+1
�G (12)

GΓ2n = (−1)nΓ2nG, �GΓ2n = (−1)n+1Γ2n
�G

Finally, note that G �G ∝ Γ2n+1, which we will also need.

V. GENERIC CLASSIFICATION OF DIRAC FERMIONS IN ANY DI-

MENSION

It is useful to first summarize the results of this section. Since the dimension

of the above enveloping algebra of the Clifford algebra is 2N = 2 × 2n × 2n, any

2n × 2n complex matrix can be expressed as an element of the enveloping algebra.

Thus, the matrices P, T, C can be expressed in terms of products of the Γa matrices.

8
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d mod 8 T T T /T C CT /C st sc

0 �G +1 G +1 −1 +1

1 �G +1 G +1 +1 +1

2 G −1 �G +1 −1 +1

3 G −1 �G +1 −1 −1

4 �G −1 G −1 −1 +1

5 �G −1 G −1 +1 +1

6 G +1 �G −1 −1 +1

7 G +1 �G −1 −1 −1

TABLE II: The implementation of T,C according to dimension. The opposite sign of

the relation of T,C to their transpose is realized with T �, C � (see text). The signs st,c are

defined in section VII.

VI. CLASSIFICATION OF PROTECTED ZERO MODES AND TOPOLOG-

ICAL INSULATORS

In this section we classify gapless theories that are protected by the symmetries,

i.e. the theories where the mass M has a symmetry protected zero eigenvalue. The

existence of this zero mode can arise in two ways: either M is forced to be zero, or

from the weaker condition det(M) = 0; as explained below, the first way corresponds

to a Z or 2Z topological insulator, whereas the second is of type Z2.

A. AIII

The existence of TI’s in class AIII in odd dimensions is easy to understand. Recall

that P symmetry is implemented with Γ2n+1. This leaves no Γ-matrix to associate

11

To obtain all AZ classes,  one needs to tensor in 
an additional space, for example: 

We find that in a given dimension d, there is a unique T,C satisfying the stringent

first condition in (5, 6), which is either G or �G, depending on the spatial dimension.

Which class this symmetry belongs to is determined by the transpose relations (11).

The eight-fold periodicity arises from the even/odd properties of the powers in eq.

(11). Namely, n(n−1)/2 is even for n = 4m, 4m+1 and odd for n = 4m+2, 4m+3,

where m is an integer. On the other hand n(n+1)/2 is even for n = 4m, 4m+3 and

odd for n = 4m + 1, 4m + 2. Finally, in order to obtain all 10 classes, one needs to

tensor in an additional space, as will be explained. We need to distinguish even and

odd dimensions:

A. For d odd

Let d = 2n+1. Without loss of generality one can choose γa = Γa for a = 1, 2, ...2n,

and M = Γ2n+1, since other choices are related by unitary SO(d) rotations. The P

symmetry can be imposed with P = Γ2n+1.

First consider n odd. Then the unique T that satisfies the first condition in eq.

(5) is T = G. When d = 8m+3, i.e. n = 4m+1, then T T = −T . In order to obtain

T symmetry with the other sign in the transpose, one must tensor in an additional

space. Let �τ denote another set of Pauli matrices. Up to unitary transformations,

the additional factor in T is either 1 or iτy[16], since they have opposite sign in the

relation with their transpose. Thus, the other choice for T is T � = iτy⊗G, satisfying

T �T = T �. On the other hand, when n = 4m + 3, i.e. d = 8m + 7, then T T = T

and T �T = −T �. The C symmetry is similar. The solution to the first eqn. in (6) is

C = �G. If d = 8m + 3, then CT = C, whereas if d = 8m + 7, CT = −C. Again, in

order to obtain the other sign in the transpose one needs to consider C � = iτy ⊗ �G.

Next consider n even, i.e. n = 4m or 4m+2, corresponding to d = 8m+1, 8m+5.

The symmetries are realized with T = �G and C = G. For d = 8m + 1, T T = −T
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particle energy spectrum E = ±
√
k2 +M2, the γa, a = 1, .., d, must satisfy a Clifford

algebra, and M must anti-commute with all γa in order for the cross terms in H2 to

vanish:

{γa, γb} = 2δab; {γa,M} = 0, ∀a (3)

Thus up to rescaling of M , the set {γa,M} form a Clifford algebra. (The explicit

form of M will be given below, where in general it will be an element of a Clifford

algebra times a constant or tensored with an additional space.)

The conditions for P,T,C symmetry are the following ∀a: :

P : {P, γa} = 0, {P,M} = 0 (4)

T : TγT
a = −γaT, TMT = MT (5)

C : CγT
a = γaC, CMT = −MC (6)

The way these conditions are implemented is that one constructs P, T, C satisfying

the first condition in each of the above cases, which is the most stringent, and then

checks whether the second condition on M is satisfied.

IV. CLIFFORD ALGEBRA REPRESENTATION

In this section we describe an explicit representation of the Clifford algebra which

we will utilize. A Clifford algebra is constructed from N basis elements Γa, a =

1, 2, ....N , satisfying the relations:

{Γa,Γb} = 2δab (7)

We will refer to the algebra generated by linear combinations of products of the Γa’s

as the enveloping algebra of the Clifford algebra. (In the mathematics literature,

this enveloping algebra is simply referred to as the Clifford algebra.) The degree of

6

τ = another set of Pauli matrices
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Classifying zero modes.  
• i.e. we can classify zero eigenvalues of the 

mass M based on the constraints that come 
from:    
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The algebra: with P = TC† as explained above. The general form of T,C are T = τt ⊗ Xt and

C = τc ⊗ Xc, where Xt,c are either G, �G according to Table II, and τt,c = 1 or iτy.

The “mass” can be generally expressed as M = V ⊗ Γ, where Γ = Γ2n+1,Γ2n for

d = 2n + 1, 2n respectively. We will consider only the minimal dimensions of the

space that V lives in, i.e. 1 or 2 dimensional. Let us define the signs st,c as follows:

Xt,cΓ = st,cΓXt,c. Then the constraints on V coming from T,C, eq. (5,6) are:

τtV
T = stV τt, τcV

T = −scV τc (13)

The signs st,c follow from eq. (12). and are shown by dimension in Table II.

The symmetries constrain V according to eqs. (4,5,6). A protected zero mode

arises in one of two ways. The symmetries can force V = 0, which in lower dimensions

was associated with a Z topological invariant. If the space is doubled, i.e. τt,c = iτy,
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one obtains besides V = 0 are

V T = −V =⇒ detV = 0 if dim(V ) is odd (14)

V =



a 0

0 −a



 with aT = −a =⇒ detV = 0 if dim(a) is 1 (15)

TI’s can now be classified by dimension as follows: (i) For a given dimension d,

identify st,c from Table II. (ii) Identify which cases in Table III apply for these values
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particle energy spectrum E = ±
√
k2 +M2, the γa, a = 1, .., d, must satisfy a Clifford

algebra, and M must anti-commute with all γa in order for the cross terms in H2 to

vanish:

{γa, γb} = 2δab; {γa,M} = 0, ∀a (3)

Thus up to rescaling of M , the set {γa,M} form a Clifford algebra. (The explicit

form of M will be given below, where in general it will be an element of a Clifford

algebra times a constant or tensored with an additional space.)

The conditions for P,T,C symmetry are the following ∀a: :

P : {P, γa} = 0, {P,M} = 0 (4)

T : TγT
a = −γaT, TMT = MT (5)

C : CγT
a = γaC, CMT = −MC (6)

The way these conditions are implemented is that one constructs P, T, C satisfying

the first condition in each of the above cases, which is the most stringent, and then

checks whether the second condition on M is satisfied.

IV. CLIFFORD ALGEBRA REPRESENTATION

In this section we describe an explicit representation of the Clifford algebra which

we will utilize. A Clifford algebra is constructed from N basis elements Γa, a =

1, 2, ....N , satisfying the relations:

{Γa,Γb} = 2δab (7)

We will refer to the algebra generated by linear combinations of products of the Γa’s

as the enveloping algebra of the Clifford algebra. (In the mathematics literature,

this enveloping algebra is simply referred to as the Clifford algebra.) The degree of

6
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There are 9 ways for a zero mode to arise:

case τt τc st sc constraints on V type

1 1 ∅ −1 ∅ eq. 14 Z2

2 ∅ 1 ∅ +1 eq. 14 Z2

3 1 1 −1 +1 eq. 14 Z2

4 1 1 −1 −1 V = 0 Z

5 1 1 +1 +1 V = 0 Z

6 iτy iτy −1 −1 V = 0 2Z

7 iτy iτy +1 +1 V = 0 2Z

8 iτy 1 +1 +1 eq. 15 Z2

9 1 iτy −1 −1 eq. 15 Z2

TABLE III: The nine different ways a protected zero mode can arise, regardless of dimen-

sion.

of st,c. (iii) The transpose properties of T,C can be inferred from Table II, bearing

in mind that if T or C is T � or C �, then the sign is flipped. (iv) Identify the class

using Table I. The results are the following:

15

with P = TC† as explained above. The general form of T,C are T = τt ⊗ Xt and

C = τc ⊗ Xc, where Xt,c are either G, �G according to Table II, and τt,c = 1 or iτy.

The “mass” can be generally expressed as M = V ⊗ Γ, where Γ = Γ2n+1,Γ2n for

d = 2n + 1, 2n respectively. We will consider only the minimal dimensions of the

space that V lives in, i.e. 1 or 2 dimensional. Let us define the signs st,c as follows:

Xt,cΓ = st,cΓXt,c. Then the constraints on V coming from T,C, eq. (5,6) are:

τtV
T = stV τt, τcV

T = −scV τc (13)

The signs st,c follow from eq. (12). and are shown by dimension in Table II.

The symmetries constrain V according to eqs. (4,5,6). A protected zero mode

arises in one of two ways. The symmetries can force V = 0, which in lower dimensions

was associated with a Z topological invariant. If the space is doubled, i.e. τt,c = iτy,

then this indicates the topological invariant is an even integer, i.e. of type 2Z. The
other possibility is that the symmetries lead to the condition detV = 0 which implies

V has a zero eigenvalue. As in d = 2, 3, this condition arises when a particular

vector space has odd dimension, and follows for example from V T = −V , which

implies detV = −detV = 0; this even/odd aspect is associated with a Z2 topological

insulator.

Regardless of dimension, given the allowed τt,c and st,c, one can identify 9 cases

that have a protected zero mode, and are listed in Table III. The two constraints

one obtains besides V = 0 are

V T = −V =⇒ detV = 0 if dim(V ) is odd (14)

V =



a 0

0 −a



 with aT = −a =⇒ detV = 0 if dim(a) is 1 (15)

TI’s can now be classified by dimension as follows: (i) For a given dimension d,

identify st,c from Table II. (ii) Identify which cases in Table III apply for these values

14
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Periodic Table:

21

Red entries are new.  Blue indicates chiral classes.
AL and D. Bernard 

d mod 8

AZ class 0 1 2 3 4 5 6 7

A Z ∅ Z ∅ Z ∅ Z ∅

AIII ∅ Z ∅ Z ∅ Z ∅ Z

AI Z,Z2 ∅ ∅ ∅ 2Z ∅ Z2 Z2

BDI Z2 Z ∅ ∅ ∅ 2Z ∅ Z2

D Z2 Z2 Z,Z2 ∅ ∅ ∅ 2Z ∅

DIII ∅ Z2 Z2 Z ∅ ∅ ∅ 2Z

AII 2Z ∅ Z2 Z2 Z,Z2 ∅ ∅ ∅

CII ∅ 2Z ∅ Z2 Z2 Z ∅ ∅

C ∅ ∅ 2Z ∅ Z2 Z2 Z,Z2 ∅

CI ∅ ∅ ∅ 2Z ∅ Z2 Z2 Z

TABLE IV: Periodic Table of topological insulators based on the classification of symmetry-

protected zero modes. The chiral classes are all the ones of class A, the first listed in cases

with two entries, and those labeled 2Z in even dimensions (indicated in blue online). The

new candidate topological insulators are the second listed in the cases with two entries (red

online).
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Exceptionality of two 
dimensions

• Here the structure is even richer since there 
are 2 inequivalent ways of implementing time 
reversal symmetry.    

• There are 17 inequivalent classes of Dirac 
fermions rather than just the 10 AZ classes.  

• There are 11 topological insulators!    
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4

• CII (9−). In this case, the discrete

symmetries constrain V− =

�
0 v−

w− 0

�

with vT− = −v−, wT
− = −w−. Thus if

v−, w− are odd-dimensional, then up to a

sign, det V− = det v− det w− = 0. Type

Z2.

IV. THE d = 1 DIMENSIONAL
CLASSIFICATION OF DIRAC

HAMILTONIANS

In this section, we present the complete clas-

sification of d = 1 dimensional Dirac hamilto-

nians. Although the identification of TI’s and

TS’s will be the subject of the next section, it

is useful to motivate what follows by discussing

chiral Dirac Hamiltonians with only right mov-

ing or left moving fermions
16
. Since a mass

term necessarily couples left and right movers

(see section V), these classes have a protected

zero mode for somewhat trivial reasons. Such

Hamiltonians cannot be realized on a 1d lattice

and they necessarily break T and P. However

they can appear as a d = 1-edge state of a 2d

TI or TS in classes A, C, and D which break

both T and P. An example of class A is the

quantum Hall effect. Depending on the number

of filled Landau levels there are Z number of

edge states
1
. An example of class C is the spin

quantum Hall effect in a singlet time-reversal

breaking superconductor. The spin quantum

Hall conductivity will be proportional to the

Cooper pair angular momentum, hence this is a

Z TS. Although there is no known experimental

realization, dx2−y2 + idxy superconductor (SC)

was extensively discussed theoretically
17,18

. A

realization of class D would be the thermal Hall

effect of a time-reversal breaking superfluid of

spinless (fully spin polarized) fermions. The

ν = 5/2 quantum Hall state could be a px+ ipy
paired superfluid of composite fermions

19
.

All non-“chiral” non-interacting 1d Dirac

hamiltonians with equal number of right-movers

and left-movers can be written asH = −iσx∂x+
�σ · �A+ V+, where �σ are the Pauli matrices act-

ing on a space of right/left-movers |σx = ±�.

Redefining Az = V−, these hamiltonians can be

expressed as

H =

�
V+ + V− −i∂x +A

−i∂x +A† V+ − V−

�
. (3)

The potentials V± are hermitian matrices and

A = Ax + iAy where Ax,y are also hermitian

matrices in general. The dimension of V± and

A is the number of edge mode species for each

chirality. When V± and A are even dimensional

we use �τ to denote a set of Pauli matrices act-

ing on the even dimensional flavor space. 1 will

denote the identity in either the σ or τ space.

Note that �σ and �τ have distinct physical mean-

ing: �σ acts on the space of “chirality” as we

show explicitly in sectionVB, and it is respon-

sible for the block structure of Eq.(3), whereas

�τ acts on the space of flavors which could be

spin or pseudo-spin. If there is spin-momentum

locking (see sectionVB) �σ will act on the spin

space as well as on the space of “chirality”.

The Dirac derivative structure of H con-

strains the form of T,C, and P in terms of �σ
and �τ . Furthermore, we can specify the condi-

tions V± and A have to satisfy in order for H to

have discrete symmetries under specific T,C, or

P . Hence the specific forms of symmetry trans-

formations can be used to classify hamiltonians

of form Eq.(3). Since, as described below, there

are multiple sets of matrices T,C, P with the

same T 2
, C2

, P 2
, this scheme refines the AZ

classification of Table I. Here we find even more

classes of Dirac hamiltonians in d = 1 than in

d = 2, and more classes with symmetry pro-

tected zero modes (see sectionV).

In the rest of this section, we first specify the

forms of T,C and P symmetry that preserve

the Dirac structure, and describe the resulting

conditions on V± and A in a fixed �σ basis and

arrive at 25 classes as summarized in Table II.

We then check for unitary equivalences. The

unitary transform is

H → UθHU †
θ (4)

with Uθ a rotation about the x-axis in σ-space

6

1d-classes T C P V± A zero-mode

A ∅ ∅ ∅ V †
± = V± Z

AIII(1) ∅ ∅ 1⊗ σz V± = 0 Z
AIII�(1) ∅ ∅ 1⊗ iσy V+ = 0

AIII(2) ∅ ∅ τz ⊗ σz τzV± = −V±τz τzA = Aτz
AIII�(2) ∅ ∅ τz ⊗ iσy τzV± = ∓V±τz

AII(1) 1⊗ iσy ∅ ∅ V± = ±V T
± AT = −A Z2

AII(2) iτy ⊗ σz ∅ ∅ τyV
T
± = V±τy τyA

∗ = −Aτy

AI(1) iτy ⊗ iσy ∅ ∅ τyV
T
± = ±V±τy τyA

T = −Aτy

AI(2) 1⊗ σz ∅ ∅ V T
± = V± A∗ = −A

C ∅ iτy ⊗ 1 ∅ τyV
T
± = −V±τy τyA

∗ = −Aτy Z
C� ∅ iτy ⊗ σx ∅ τyV

T
± = ∓V±τy τyA

T = −Aτy

D ∅ 1⊗ 1 ∅ V± = −V T
± A∗ = −A Z, Z2

D� ∅ 1⊗ σx ∅ V± = ∓V T
± AT = −A

BDI(1) iτy ⊗ iσy 1⊗ 1 iτy ⊗ iσy V± = −V T
± = ∓τyV±τy A = −A∗ = −τyA

T τy
BDI�(1) iτy ⊗ iσy τx ⊗ σx τz ⊗ σz V± = ±τyV

T
± τy = ∓τxV

T
± τx τx,yA

T = −Aτx,y

BDI(2) 1⊗ σz 1⊗ 1 1⊗ σz V± = 0 A∗ = −A Z
DIII(1) 1⊗ iσy 1⊗ 1 1⊗ iσy V+ = 0, V T

− = −V− A = −A∗ = −AT Z2

DIII(2) iτy ⊗ σz 1⊗ 1 iτy ⊗ σz V± = −V T
± = −τyV±τy A = −A∗ = −τyA

T τy Z2

DIII�(2) iτy ⊗ σz τx ⊗ σx τz ⊗ iσy V± = τyV
T
± τy = ∓τxV

T
± τx A = −τyA

∗τy = −τxA
T τx

CII(1) 1⊗ iσy iτy ⊗ 1 iτy ⊗ iσy V± = ±V T
± = ∓τyV±τy A = −AT = −τyA

∗τy Z2

CII�(1) τx ⊗ iσy iτy ⊗ σx τz ⊗ σz V± = ±τxV
T
± τx = ∓τyV

T
± τy τx,yA

T = −Aτx,y

CII(2) iτy ⊗ σz iτy ⊗ 1 1⊗ σz V± = 0 A = −τyA
∗τy Z

CI(1) iτy ⊗ iσy iτy ⊗ 1 1⊗ iσy V+ = 0, τyV
T
− = −V−τy A = −τyA

T τy = −τyA
∗τy

CI(2) 1⊗ σz iτy ⊗ 1 iτy ⊗ σz V± = V T
± = −τyV±τy A = −A∗ = −τyA

∗τy
CI�(2) τx ⊗ σz iτy ⊗ σx τz ⊗ iσy V± = τxV

T
± τx = ∓τyV

T
± τy A = −τxA

∗τx = −τyA
T τy

TABLE II. The properties of the 25 non-chiral d = 1 Dirac classes. 17 unitarily-inequivalent classes
separated from each other by a horizontal line. The first column lists the d = 1 Dirac classes. Columns T,
C and P show representations of symmetry transformations for each class. The columns V± and A show
symmetry constraints on the potentials. A blank cell denotes absence thereof. The symmetry constraints
guarantee zero modes in some classes (see section V). The last column shows classes with symmetry
protected zero modes and the type of zero modes.

�η. Up to unitary transformations there are two
choices: ηp, �ηp = 1 or τz. This gives 4 AIII
classes.

Finally for the classes with both T,C symme-
tries we require that T and C commute since
their physical origins are assumed to be unre-
lated. This implies that the η’s should commute

or anti-commute:

{ηt, ηc} = {�ηt, ηc} = 0 = [�ηt, �ηc] = [ηt, �ηc] = 0.
(12)

While T and C each can be implemented us-
ing either T = ηt ⊗ iσy or �T = �ηt ⊗ σz, and

either �C = �ηc ⊗ 1 or C = ηc ⊗ σx respectively,
the requirement of Eq.(12) rules out ( �T ,C) pos-
sibility. This yields three possibilities: (T,C),
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Table of TI’s in d=2.
(red are new)
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8

d = 1 classes zero modes topological invariant examples

A Z Z QH edge states

C Z Z spin QH edge states in d+ id-wave SC
17,18

D Z Z thermal QH edge states in spinless chiral p-wave SC
17

TABLE III. d = 1 chiral Dirac hamiltonian classes.

d = 1 classes T C P zero modes top. inv. locking examples

AIII(1) ∅ ∅ σz Z
AII(1) iσy ∅ ∅ Z2 Z2 Y HgTe/(Hg,Cd)Te

D ∅ 1 ∅ Z2

BDI(2) σz 1 σz Z “strained graphene”

DIII(1) iσy 1 iσy Z2 Z2 Y (p+ ip)× (p− ip)-wave SC

DIII(2) iτy ⊗ σz 1 iτy ⊗ σz Z2 Z2 N particle-hole symmetric KM model

CII(1) 1⊗ iσy iτy ⊗ 1 iτy ⊗ iσy Z2 Y doubled KM

CII(2) iτy ⊗ σz iτy ⊗ 1 1⊗ σz Z N

TABLE IV. d = 1 non-chiral Dirac hamiltonian classes with symmetry protected zero modes. The spin-

momentum locking column is left blank when spins cannot be assigned because the time-reversal operator

do not involve either iσy or iτy. New classes are shown in boldface (red online). The example in quotation

marks is a suggested possible realization.

H is gapless if it has a zero eigenvalue at k = 0,
i.e. det H(k = 0) = 0. Below we simplify this
into a condition on V−.

The potential Ax can be removed by redefin-
ing the fields in the second quantized theory:
ψL,R → e−i

� x Ax(x)dxψL,R (see subsection VB).
A constant V+ is a chemical potential which
shifts the overall energy levels. Hence we set
this to zero. Now the condition for existence of
a zero mode and hence a gapless spectrum is

det

�
V− iAy

−iAy −V−

�
= 0 (13)

However Eq. (13) is difficult to use in general21.
Hence we use the freedom of unitary transform
Uθ to set Ay = 0. The criterion for a TI is now
simply det V− = 0 for fixed Ay = 0.

Now we test if the conditions on V− im-
posed by symmetry listed in Table II guarantee
det V− = 0. As the choice of Ay = 0 makes C

and �C inequivalent we consider all 25 entries.
Once we identify symmetry protected gapless

Dirac classes, we check for unitary equivalence
among those by consulting the Table II. In Ta-
ble IV we list unitarily inequivalent protected
classes.

Two types of constraints on V− protect a
gapless spectrum. First, V− = 0 guarantees
det V− = 0 independent of the dimension of
V− nor the Z- number of edge modes. Second,
V T
− = −V− implies detV− = − detV− when V−

is odd dimensional, and hence det V− = 0. For
3d TI-TS the d = 2 Dirac classes with V− = 0
and those with V T

− = −V− each corresponded
respectively to TI-TS with Z and Z2 bulk topo-
logical invariants9. By analogy with the 3d case,
the possible 2d TI-TS where V− = 0 should be
Z type, whereas those that rely on V T

− = −V−
with V− odd-dimensional should be of Z2 type
because of the even/odd aspect. We summarize
the resulting 2d “TI-TS” classes in the table IV.
Note that all TI-TS’s so-identified are unitarily
inequivalent, as they must.

D. Bernard, E-A Kim and AL. 
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Interactions in 2d 
• For the  IQHE,   bulk interactions lead to 

FQHE.   Boundary Dirac theory deformed into 
a Luttinger liquid.

• Quartic interactions on the boundary are 
marginal. 

• Can show:   ALL  quartic interactions on the 
boundary consistent with the T,C,P symmetries 
are EXACTLY marginal, like the Luttinger L. 

• This strongly suggests fractional  Topological 
Insulators.  Likely to be integrable on boundary.
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Summary

• this holographic approach reproduces other 
approaches based on topology or K-theory 
but suggests new topological insulators.

• On additional TI in every even dimension.

• 6 additional TI in 2 dimensions!  

• physical realizations?
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