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e \What are Topological Insulators?

e Two important examples in 2 spatial
dimensions: IQHE and Quantum Spin Hall
Effect.

e Classification in any spatial dimension. The
Periodic Table.

e New Topological Insulators in 2 dimensions.

e Role of interactions in 2d: New Luttinger L's.
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What are Topological Insulator

e Band insulators with a gap with special
topological properties.

e Bulk wave functions have a topological
invariant.

e This leads to gapless states on the boundary
that are robust, I.e. protected against
scattering with impurities, localization, etc.

e |llustrate with 2 important examples in 2
dimensions: IQHE, QSHE.
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2-dimensional electron gas in a
perpendicular magnetic field:

N right-moving
edge modes

D —

B into page breaks

time reversal symmetry mater lal

Hall conductivity is quantized: 0y = N e?/h
N 1is an integer to 1 part in 109 !

Why? N right-moving edge modes.
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Insulator

(a)

n=0

Quantum Hall
State
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n=1

(Generalized viewpoint:

Conduction Band <€

second Landau level

edge mode

Valence Band &
]
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first Landau Level
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q The BULK topological invariant
1! _ _ - |

example of topology: you cannot smoothly deform a
caju into a donut:

smooth deformations:

1
o
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@?\ = AT DOUNGD

number of holes = Euler invariant
=integral over surface of some function. ‘
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The bulk topological invariant.... )X

s —

Bulk wavefunctions |u(k)) have analogous
topological properties (TKINN invariant):

A = i(u(k)|Vi|u(k))

1 .
N:—/d2kv><A = integer = Chern #

2T

= number of chiral edge modes

We have holography: bulk/boundary correspondence.
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"Quantum -

e the first new realization of a topological
insulator. (Kane-Mele). Top. inv. is Z>

e Preserves time-reversal symmetry, spin orbit
coupling plays the role of magnetic field.

e Physical realization in HgCdTe quantum
wells.

Due to T-reversal, there
are now both left and
right moving edge
states, but momentum
is locked with spin.

D) (no B field)
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Classification of TT’s )

-

e |QHE and QSHE differ in their time-reversal
symmetries, and this is the main distinction.

 One can also consider particle-hole
symmetry (for superconductors).

e Two approaches, one based on K-theory
(Kitaev), the other on the existence of
topological invariants (Ryu et. al.), both
predict 5 classes of Tl in any dimension.

e Our work: holographic approach, I.e.
classification of symmetry protected zero
modes on the boundary (Bernard,Kim,AL).
Not necessarily equivalent.
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- The 10 symmetry classes

Under time reversal (T), particle-hole (C) and
chirality (P), the hamiltonian transforms as:

For hermitian H, H#* = #*, and we work with
the transpose.

II
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AZ-classes| T C P
A 0 0 0
AIII 0 0 1
All —1 ) )
Al +1 ) )
C 0 —1 )
D 0 +1 )
BDI +1 +1 1
DIII —1 +1 1
CII —1 —1 1
CI +1 —1 1

TABLE I: The 10 Altland-Zirnbaver (AZ) hamiltonian classes. The £ signs refer to T! =

+T and CT = +C, whereas ) denotes non-existence of the symmetry.

Notation BDI etc. goes back to Cartan’s classification of symmetric
spaces.
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- Principles of Classification

e Assume the boundary theory is first order in
derivatives (Dirac). This can give a spectrum
E2 = k? + M? which is gapless if M=0.

e Classify zero modes of M according T,C,P
and spatial dimension d.

e A well-posed mathematical problem, solved
using generic properties of Clifford algebras.

13

Friday, August 24, 2012



Dirac hamiltonian: H

_iZVa

a=1

+ M

0x,

To obtain Dirac spectrum:
Vas Vo = 20ab;

{Vo, M} =0, Va

P : {P,v,} =0,
T: Ty =-—7T,
C : Cvl =~,0,

The conditions for P, T, C symmetry are the following Va: :

{P,M} =0
TM!' = MT
CM' = —MC

14
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\ Clifford algebra representation
on a 2" dimensional vector space

== ——— —_———

' =0, ®0., R0, R0,
F2:U:U®O-z®0-z®"'®0-z
I's = 1 R®R0,Q®0,Q - Ro,

'y =1 R0, R0, --- R0,

F2n—1 — 1®1®®1®0y
Iy, = 101Q---@1Qao,

F2n—|—1 — 0-z®0_z®"'®0-z®o_z

o0 = Pauli matrices
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. The hamiltonian:

| _

Dirac hamiltonian:

d

0 i
H:_iz%(% + M d=d-1

a=1

For d odd:

choosey, =1',fora =1,2,..2n

For d even:

Let d = 2n+1.
and M = F2n+1
R aR e == L ol 20 |01
Let d = 2n.
i LY I

projectors:

P+

Note, for d even there is one unused I 5, . = P

which leads to “left/right” chirality with the

(1 -

- F2n—|—1)/2:

16
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. E Implefnentin

| —

e In any dimension P = [ 2n+1
e T and C are elements of the Clifford algebra.

e In any dimension T, C are either:

~~

G=111315-- 191, G=Gla

They satisty:

~ ~

(;T’:: (__1)n(n+4)/2(;7 (;7’:: (__1)n(n—4)/2(;

L7
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dmod 8 T T /T C Ct/C |s; |se
e —1| 41
T - R — 0 (j +1 G +1 +
1 G +1 G +1 |41 +1
C: Oy =C N
2 G 1 G +1 | —1]+1
3 G —1 G +1 | —1] -1
4 G 1 G 1 | —=1]+1
5 G 1 G —1 | +1]|+1
6 G +1 G 1 | =1|+1
7 G +1 G 1 | =1]-1

To obtain all AZ classes, one needs to tensor in
an additional space, for example:

T/:iTy®G, C’:z”ry@é.

T = another set of Pauli matrices

18
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_ Classifying zero modes.

e |.e. we can classify zero eigenvalues of the
mass M based on the constraints that come

TM*' = MT

CM*=-MC

The general form of T,C are T' = 7 ® X; and
The algebra: i e

C =1.® X., where X, . are either G,G

Tt’c =1 ]. Or /I:Ty.

M =V T, where I' = I'y,,11,1'9, for d = 2n + 1, 2n respectively.

constraints on V' coming from T, C, | nV’ =5V, TV = —s V1.

)(t,cF — St,cPXt,c-

19
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There are 9 ways for a zero mode to arise:

case|| T Te St Sc |constraints on V' |type
1 1 0 —1 0 eq. 14 Zo
2 ) 1 0 +1 eq. 14 Lo
3 1 1 —1 +1 eq. 14 Lo
4 1 1 —1 —1 V=0 7
5! 1 1 +1 +1 V=0 7
6 || ity | Ty —1 —1 V=0 27
7 Ty | Ty +1 +1 V=0 27
8 || i7y 1 +1 +1 eq. 15 Lo
9 1 1Ty —1 —1 eq. 15 Lio

Vi = -V = detV =0 if dim(V) is odd

a 0 . - A .
| with a° = —a = detV =0 if dim(a) is 1
0 —a

20
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i? Periodic Table:

_—— i — = ——————

d mod 8

AZ class 0 1 2 3 4 5 6 7
A Z 0 Z ] Z 0 Z 0
AIII 0 Z 0 Z 0 Z 0 Z
Al 7., 7 0 0 0 27 0 L Zs
BDI Zs Z ] 0 0 27, 0 T
D Lo Lo VIND, ) 0 0 27, 0
DIII 0 Zo Zs Z 0 0 0 27
ATl 27. 0 Lo Lo 7., 7o ) 0 0
CII 0 27, ] Zo Zs Z 0 0
C ) ) 27, 0 Zo Zo Z, 7o )
CI 0 0 ] 27, 0 Z Lo Z

Red entries are new. Blue indicates chiral classes.
AL and D. Bernard
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. Exceptionality of two |
dimensions

— = e = —

e Here the structure Is even richer since there
are 2 inequivalent ways of implementing time
reversal symmetry.

e There are 17 inequivalent classes of Dirac
fermions rather than just the 10 AZ classes.

e There are 11 topological insulators!

22
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1d-classes T C P Vi A zero-mode
A ] 0 0 Vi=14 Z
AIII 0 0 1®o0. Vi=0 Z
ATII 0 0 1®ioy Vi=0
AlIII o) 0 0 T Q0 .V =-ViT, T.A = AT,
ATII 0 0 T. @ i0y Vi = FVaT:
Allgy | 1®ioy 0 0 Vi =2V AT =-A Lo
Allgy |iTy @ 0 0 0 Vi = Vi, Ty AT = — ATy
Al ity ®ioy| 0 ) Vi = +Vit, r, AT = — A7,
Al | 1®o0: 0 0 V=V, A*=—-A
C 0 1Ty ® 1 0 Vi = -Vir, TyA* = — ATy Z
C’ 0 iTy ® Og 0 r, VI = FVar, T, AT = — AT,
D 0 11 0 Ve =-V{ A* = —A Z, 7
D’ 0 1R o0, ) Vi =FxVE AT = —A
BDIyy |iTy ®ioy| 1®1 |ity ®ioy| Vi=-VI =Fr,Vir, A=—-A*=—1,A"7,
BDI'(D 1Ty QiOy| T R0z | T- Qo, |V = :I:TnyTy = Fr. VI, Tm,yAT = —ATyy
BDI(Q) 1R o0, 1®1 1® o, Vi=0 A*¥=—-A Z,
DIll;) |1Qio, | 1®1 | 1Qigy, Vi=0,V"=-V_ A=—-A"=—-A" Lo
DIllz) |iTy®o0.| 1®1 |ity,®o0.| Vi=-VI=—-7,Vir, A=A =—1,AT7, Zi>
DIy |iTy @0, |Te ® 0y | T Rioy | Vi = ity =Fr.Vin |[A=—1,A*Y = —1,A"T1,
Clly | 1®ioy | ity ®1 ity ®ioy| Vi=+VE =F7r, Vit A=A = —71,A*7, Zo
Cllyy |7e ®ioy ity 02| 7. Q0. |Va =+m Vi =Fr,ViT, Toy AT = — A1y,
Cllgy |iTy®o0.|iTy,®1| 1®o0. Vi=0 A=—-1,A"Ty Z
Clyy ity ®ioy| ity ®1| 1®ioy, | Vo=0,7,V =-V_r, |A=-1,A"1,=—-1yA%7,
Cl(2) 1®Ro, |ty ®1 |iTy RO, Ve=V!=—-1,Var, A=-A"=—-1A"Ty
CIs, Te @0z |iTy ® 02| T2 Qioy | Ve = Vit = Fr, Vi1, |A= —1A%1, = —1,AT 1,

23
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' Table of TI’s o

(red are new)

l
Jn

D. Bernard, E-A Kim and AL.

d =1 classes |zero modes |topological invariant examples
A 7 Z QH edge states
C 7 7 spin QH edge states in d + id-wave SC'7'8
D 7 7 thermal QH edge states in spinless chiral p-wave SC'7

TABLE III. d = 1 chiral Dirac hamiltonian classes.

d = 1 classes T C P zero modes|top. inv.|locking examples
Alll 0 0 02 7
Ally) 10y 0 ) Zio Zio Y HgTe/(Hg,Cd)Te
D 0 1 0 L2

BDI ;) o 1 o Z, “strained graphene”

DIII 1oy 1 1oy Zio Zio Y (p+ip) X (p — ip)-wave SC
DIII,, 1Ty @ 02 1 1Ty Q0 Zio Lo N particle-hole symmetric KM model
CII ) 1®ioy i1y @ 1|iTy @ 10y Lo Y doubled KM

CII o) 1Ty oty @1 1 R0, 7 N

TABLE IV. d = 1 non-chiral Dirac hamiltonian classes with symmetry protected zero modes. The spin-
momentum locking column is left blank when spins cannot be assigned because the time-reversal operator
do not involve either io, or iT,. New classes are shown in boldface (red online). The example in quotation
marks is a suggested possible realization.
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Interactions in 2d

e For the IQHE, bulk interactions lead to
FQHE. Boundary Dirac theory deformed into
a Luttinger liquid.

e Quartic interactions on the boundary are
marginal.

e Can show: ALL quartic interactions on the

boundary consistent with the T,C,P symmetries
are EXACTLY marginal, like the Luttinger L.

e This strongly suggests fractional Topological
Insulators. Likely to be integrable on boundary.
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Summary

|
ﬂ

e this holographic approach reproduces other
approaches based on topology or K-theory
but suggests new topological insulators.

e On additional Tl in every even dimension.
e 6 additional Tl in 2 dimensions!

e physical realizations?

26
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