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Motivations from Mathematics and Physics
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Motivations from Mathematics and Physics

e Anderson transitions in 2+1 dimensions

e physics of metal-insulator transitions
e the challenge: computing quenched disorder averages.

e important physical examples: Quantum Hall Transition,
Graphene

e new universality classes beyond percolation
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[0 Supergroups in Mathematical Physics ]

Anderson transitions: supergroups arise in Efetov’s
supersymmetric method of computing quenched disorder averages.

sigma models on Lie supergroups arise in string theory on AdS
spaces, e.g. psl(2l2) sigma models.

Spin chains built on supergroups arise in the integrability approach

to N=4 susy Yang-Mills.

various problems in statistical mechanics: percolation, self-
avoiding walks, polymers, .....
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[- Supergroups in Mathematical Physics ]

Anderson transitions: supergroups arise in Efetov’s
supersymmetric method of computing quenched disorder averages.

sigma models on Lie supergroups arise in string theory on AdS
spaces, e.g. psl(2l2) sigma models.

Berkovits, Vata, Witten 1999

Spin chains built on supergroups arise in the integrability approach

to N=4 susy Yang-Mills.

Beisert and Staudacher 2005

various problems in statistical mechanics: percolation, self-
avoiding walks, polymers, .....
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Consider electrons moving in a random potential:
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Consider electrons moving in a random potential:

V(x)

localized states

X=space
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* free electrons in a magnetic field and random impurity potential
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* free electrons in a magnetic field and random impurity potential

conductivity

delocalized

localized
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Quantum critical point
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* free electrons in a magnetic field and random impurity potential

conductivity

localized

delocalized R Quantum critical point

1/B

* important open problem: critical properties of the transition, exponents, etc. E.g:

&~ (B — E)” ABox T, v=T/3
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Why Dirac fermions?

Universality Classes

Nearly all interesting cases have 1-st order actions.

Most general Dirac hamiltonian in 2d:

H

(

Vi +V_

0.+ A V.-V

—10z + Az>

V,A=V(), A = random potentials
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Universality Classes

Why Dirac fermions?  Nearly all interesting cases have 1-st order actions.

Most general Dirac hamiltonian in 2d:

g Vet Vo —idetAs
-\ —i0,+A, V.-V

V,A=V(), A = random potentials

Classification according to discrete symmetries:

° e e S |
° I BRI O == 2
° H=KH*K™' K!'=4K
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Universality Classes

*with D. Bernard, J.Phys. A35 (2002)

Why Dirac fermions?  Nearly all interesting cases have 1-st order actions.

Most general Dirac hamiltonian in 2d:

Vi + V. —ids+ As

o —
0.+ A, V.-V

V,A=V(), A = random potentials

Classification according to discrete symmetries:

° e R e e Y SR |
° e A E T e R O 1= 1 (U
o H=KH'K'! K'=+4K
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Result of the classification:
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e anew universality class (not percolation)
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e Chalker-Coddington (1988) network model: Dirac fermion in class GUE
e anew universality class (not percolation)

e Spin quantum Hall transition: class C
e mapped to percolation by Gruzberg, Ludwig, Read (1999)

* V=4/3
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Result of the classification:

e 13 universality classes

e contains: 3 Wigner-Dyson classes

e contains: 10 Altland-Zirnbauer classes

e Chalker-Coddington (1988) network model: Dirac fermion in class GUE
e anew universality class (not percolation)

e Spin quantum Hall transition: class C
e mapped to percolation by Gruzberg, Ludwig, Read (1999)
° V=4/3

e chiral Gade-Wegner class (hopping on bipartite lattices)
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Result of the classification:

e 13 universality classes

e contains: 3 Wigner-Dyson classes

e contains: 10 Altland-Zirnbauer classes

e Chalker-Coddington (1988) network model: Dirac fermion in class GUE
e anew universality class (not percolation)

e Spin quantum Hall transition: class C
e mapped to percolation by Gruzberg, Ludwig, Read (1999)
° V=4/3

e chiral Gade-Wegner class (hopping on bipartite lattices)

* Guruswamy, AL,Ludwig (1999)
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Supersymmetric Disorder Averaging

Consider a free hamiltonian in a random potential V (x):

\VL
e.g. Schrodinger for simplicity: | = i3 + V()

We are interested in disorder averaged Green functions:

<P@P @) > = / DVP[V] < $(a)d' (') >v

The problem: properly normalize the Green function at fixed V by Z(V):
The trick: represent Z with bosonic ghosts:

1
_—__— | DB e SW¥BYV)
Z(V) | poe

We can now perform the functional integral over the random potential V:

BT ) = / DyDfe S (z)e!(y)

Seff 1S an interacting quantum field theory of fermions and ghosts.
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Where are the critical points?
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Where are the critical points?

e There are no perturbative fixed points at 1-loop and higher.

AL and Bernard 2002
e due to marginality of the interactions

Wednesday, August 10, 2011



Where are the critical points?

e There are no perturbative fixed points at 1-loop and higher.
AL and Bernard 2002
e due to marginality of the interactions
e QOther approaches:

e  Replica sigma models (Pruisken 1984)

o Supergroup sigma models (Zirnbauer 1999)
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Where are the critical points?

e There are no perturbative fixed points at 1-loop and higher.

AL and Bernard 2002
e due to marginality of the interactions
e Other approaches:

e  Replica sigma models (Pruisken 1984)

o Supergroup sigma models (Zirnbauer 1999)

e OUR NEW APPROACH: Resolve the RG flow in 2

stages; use super spin charge separation; new results for gl
(1]1) current algebra; explicit form of logarithmic operators in
terms of symplectic fermions.
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- [dx " H W

For any realization of the disorder the action hasa ¢gl(N|N) symmetry.

The important super subgroup symmetry which commutes with
permutations of the copies is:
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Supergroup symmetries in the N-copy theory

!II Ll

Introduce N-copies of the theory in order to compute multiple moments:

fields: T = (v, 59), a=1,..,N

_ [dx W' H W
For any realization of the disorder the action hasa ¢! (N|N) symmetry.

The important super subgroup symmetry which commutes with
permutations of the copies is:

gl(1]1)n
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Supergroup symmetries in the N-copy theory

Introduce N-copies of the theory in order to compute multiple moments:

fields: s (G e =1 N

The action at fixed realization of disorder:

Ssusy = / 22—:[ U_(0, —iA(2)V) +V_(0; — iAz(2)) ¥y — iV (2) (VU + T U, )

— iM(z) (P_0, —¥_U,) ]

_ [dx W' H W
For any realization of the disorder the action hasa ¢! (N|N) symmetry.

The important super subgroup symmetry which commutes with
permutations of the copies is:

gl(1]1)n

Wednesday, August 10, 2011



The gl(1]1)y affine Lie algebra symmetry is generated by the chiral currents:
H=) o2, J=) Bif2, Si==%) vifs

which satisfy the operator product expansion: (k=N = level)

H(2)H(0) ~ g 7(2)J(0) ~ —g
H(2)54(0) ~ J()S4(0) ~ %7 S
S (2)S_(0) ~ g + % (H — J)

Additional symmetries that commute with the above: su(lN) at level k=0

currents: pr 18 ¢gt3a/wi” Laﬁ — ﬁgtga,ﬁﬁ’, L2 = L?p i L%

Important symmetry: gl(1]1) y & su(N)g
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* First separate the theory into two commuting sets of degrees of freedom.
This involves a remarkable identity for the Sugawara stress-tensors:
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Strategy for resolving the renormalization group (RG) flow: Based on the
idea that the RG flow to low energies decouples massive degrees of freedom.

* First separate the theory into two commuting sets of degrees of freedom.
This involves a remarkable identity for the Sugawara stress-tensors:
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Critical points from Super Spin-Charge Separatiot

Strategy for resolving the renormalization group (RG) flow: Based on the
idea that the RG flow to low energies decouples massive degrees of freedom.

* First separate the theory into two commuting sets of degrees of freedom.
This involves a remarkable identity for the Sugawara stress-tensors:

N
1
N—co o o « a
Tl = > (2045 + 820:6%) = Tyapyn + Teuy,
=1

* In the first stage of the RG flow, carry out the flow for the couplings in
Ses corresponding to these two sets of degrees of freedom:

d*x 14 il
S:Scft‘i‘/g (9aJa-Ja+ 98B JB)
where Ja =gl(il) currents, Jg =su(lN) currents. The r-loop

beta functions are:
RN 495

L& P
A/ 5 YAk A/ _+gB
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Critical points from Super Spin-Charge Separatiot

Strategy for resolving the renormalization group (RG) flow: Based on the
idea that the RG flow to low energies decouples massive degrees of freedom.

* First separate the theory into two commuting sets of degrees of freedom.
This involves a remarkable identity for the Sugawara stress-tensors:

N
—CO 1 (07 « (0% ©X
Theo ™ = =5 D ($20:95 + 520.67) = Touujy_y + Teuayo

k=Y

* In the first stage of the RG flow, carry out the flow for the couplings in
Ses corresponding to these two sets of degrees of freedom:
d*x 1A e
S = Seft + B (9aJa-Ja+ 98B JB)

where Ja =gl(il) currents, Jg =su(lN) currents. The 1-loop

beta functions are:

AR T,

Since ga (gp) is marginally irrelevant (relevant) only the su(IN) degrees of freedom are
gapped out in the flow.  First stage: flow to gl(tl)n

Wednesday, August 10, 2011



Critical points from Super Spin-Charge Separatiot

Strategy for resolving the renormalization group (RG) flow: Based on the
idea that the RG flow to low energies decouples massive degrees of freedom.

* First separate the theory into two commuting sets of degrees of freedom.
This involves a remarkable identity for the Sugawara stress-tensors:

N
—CO 1 (07 « (0% ©X
Theo ™ = =5 D ($20:95 + 520.67) = Touujy_y + Teuayo

k=Y

* In the first stage of the RG flow, carry out the flow for the couplings in
Ses corresponding to these two sets of degrees of freedom:
d*x 1A il
S = Seft + B (9aJa-Ja+ 98B JB)

where Ja =gl(il) currents, Jg =su(lN) currents. The 1-loop

beta functions are:

e e
Since ga (gp) is marginally irrelevant (relevant) only the su(IN) degrees of freedom are
gapped out in the flow.  First stage: flow to gl(tl)n

*  Introduce additional forms of disorder as relevant perturbations of gl(xl)x
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Solution of the gl(zlD)x theory

AL 0710.2906 [hep-thl, builds on Schomerus and Saleur 2006
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Solution of the gl(ilDk theory

AL 0710.2906 [hep-thl, builds on Schomerus and Saleur 2006

Free field representation:  two scalar field and a symplectic fermion:

2

Action: B —/dQCC Z (nabau¢a u¢b‘|‘€abauxa qu)

a,b=1

ivko.¢', J=iVko.¢®
VEO @ =VE g [k H e ¢/ VE

Representation of H
the current algebra:

2
I
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Solution of the gl(ilDk theory

AL 0710.2906 [hep-thl, builds on Schomerus and Saleur 2006

Free field representation:  two scalar field and a symplectic fermion:

2

Action: B —/dQCU Z (nabau¢a u¢b‘|‘€abauxa qu)

a,b=1

Representation of H = iVko,0', J=iVkd,d
the current algebra: S, = VRO ECPIVE 5 L RO e iV
N4 L2708 bl WA YIS 2D S |
Twist fields: X (€72)ux(0) = e X (2)p2(0)
(™ 2)ua(0) = ™ x3(2)pa(0)
A(,LL)\> id )‘(A il 1) = Af\x)
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VERTEX OPERATORS: fields transforming in finite dimensional reps of gl(zl)x

The corresponding vertex operator:

Vingy = (h—j)"* TR W ime
) T T\ 02 eilG-nt-G-nevE )0 0T TR
Cpnformal scaling N (B2 (= hti=1)
dimension: (h.d) 912 ok
Closed operator algebra: k< hj<k h,j,k = integers
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VERTEX OPERATORS: fields transforming in finite dimensional reps of gl(zl)x

(h O ) (j O )
LA : 4d peeelot i s A VO e ]
2-dimensional reps <h,j>: J (be=hsj)

The corresponding vertex operator:

_py eihe'—je?)/VE -
et R it A=
il { o2 ei(h-1)¢'-(G-1)¢")/VE |’ k

Cpnformal scaling N (B2 (= hti=1)
dimension: T R 2k
Closed operator algebra: k< hj<k h,j,k = integers
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4-dimensional indecomposable reps <0>,: (1,0) ® (0,1) = (0) )

Corresponding vertex operator (A=0): ( Xt ell@l =)/ VE )
) vk
(0)a) —
07|

\Xz e—i(¢'—4%)/VE )

Logarithmic property:  Virasoro zero mode is not diagonal (fordan block form)

0000\
Hholattite

ByEEAEs
E1o 0 0 0
oooo/

(similar properties found for osp(2l2) by Maassarani and Serban 1997)
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4-dimensional indecomposable reps <0>,:

Corresponding vertex operator (A=0):

0)a)y —

L i@ =9?)/VE
(taln
"/
\Xz e~ i(¢'=0?)/VEk )

Logarithmic property:  Virasoro zero mode is not diagonal (fordan block form)

0000\
Hholattite

Byl
E1o 0 0 0
oooo/

(similar properties found for osp(2l2) by Maassarani and Serban 1997)

(due to the log pair (1, ¥'x2) )
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Logarithmic perturbations

Quantum numbers:

*under the gl(ilr) x su(lN) symmetries:
Vo B =2 ((1,0)@ (0, 1)) @ [ved]

* currents= bilinears in these fields. Examining the quantum numbers:
For N<2 the most relevant operator corresponds to <o>(,). Leads to:

470
S = Sqy +g/ 5 2o

Lz [ &

al.b=1
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Logarithmic perturbations

Additional disorder as perturbations of the gl(ilr) cft:

* in the original theory they correspond to left/right current interactions.

* after gapping out the su(N), degrees of freedom, additional disorder

corresponds to relevant perturbations consistent with quantum numbers.

Quantum numbers:

*under the gl(ilr) x su(lN) symmetries:
Vo B =2 ((1,0)@ (0, 1)) @ [ved]

* currents= bilinears in these fields. Examining the quantum numbers:
For N<2 the most relevant operator corresponds to <o>(,). Leads to:

470
S = Sqy +g/ 5 2o

Lz [ &

al.b=1
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* The above action defines a gl(ilt) version of sine-Gordon theory.

* The logarithmic perturbations do not drive the theory to a new fixed point:
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* The above action defines a gl(ilt) version of sine-Gordon theory.

* The logarithmic perturbations do not drive the theory to a new fixed point:

Thus: The critical exponents should be in the gl
(1/1)n conformal field theory
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Multi-fractal exponents

* aprobe of disorder averaged higher moments; must be computed in the N-copy theory

density of states operator: () = H R R

(@) _ fd%p(x)q

q-th moment: T =

(f #xp(z))
scaling at the critical point: PW o~ L7 (L = size)
Relation to scaling dimension of operators: 7e=Tq+2(q—1)
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Multi-fractal exponents

* aprobe of disorder averaged higher moments; must be computed in the N-copy theory

density of states operator: () = H R R

2
q-th moment: p@ — Jd CE@Q

(f #xp(z))
scaling at the critical point: P9~ LT (L = size)
Relation to scaling dimension of operators: 7e=Tq+2(q—1)
fq < scaling dimension of p
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We compute T, inthe N=2 copy theory since for g>qc the multi-fractal spectrum
is known to cross over to a non-parabolic spectrum and 2 < ¢. < 3.

The most revelant operator in p? corresponds to the <o,q> gl(1lD) rep.
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We compute T, inthe N=2 copy theory since for g>qc the multi-fractal spectrum
is known to cross over to a non-parabolic spectrum and 2 < ¢. < 3.

The most revelant operator in p? corresponds to the <o,q> gl(1lD) rep.

4 TR
Result: Iy = al 1 )
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We compute T, inthe N=2 copy theory since for g>qc the multi-fractal spectrum
is known to cross over to a non-parabolic spectrum and 2 < ¢. < 3.

The most revelant operator in p? corresponds to the <o,q> gl(1lD) rep.

4 TR
Result: Iy = al 1 )

agrees to 1-2% with numerical results of Klesse&@Metzer (1995);
Evers, Mildenberger and Mirlin (2001)
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Localization exponent
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Localization exponent

This exponent corresponds to tuning a parameter in the action to critical point, i.e.
it’s a quantum critical point.

d*x

g eI Y v=1/2-T1,)

[',  =scaling dimension of (O,
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Localization exponent

This exponent corresponds to tuning a parameter in the action to critical point, i.e.
it’s a quantum critical point.

d*x

S N e i) 1 iy
[',  =scaling dimension of (O,
What is the operator O, ? no simple quantum number arguments to
identify it
Hint from spin quantum Hall: here gl(il)n becomes 0sp(2]2) _on
Use the exact embedding: gl(il), C osp(2l2)-;
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By comparing conformal dimensions:  gl(1lt), = percolation

In the N=2 theory; the localization length exponent for percolation - <2,1> field.

Natural generalization in the gl@lDn theory is the field - <IN,N-1>
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By comparing conformal dimensions:  gl(1lt), = percolation

In the N=2 theory; the localization length exponent for percolation - <2,1> field.

Natural generalization in the gl@lDn theory is the field - <IN,N-1>

N2

This gives: 6
S YT aON—1
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By comparing conformal dimensions:  gl(1lt), = percolation

In the N=2 theory; the localization length exponent for percolation - <2,1> field.

Natural generalization in the gl@lDn theory is the field - <IN,N-1>

N2
T AT

This gives:

Since the N=2 theory explains the multi-fractal exponents, let us double the number
of copies one more time and consider N=4:

10
— _— ~ 299
ik
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By comparing conformal dimensions:  gl(1lt), = percolation

In the N=2 theory; the localization length exponent for percolation - <2,1> field.

Natural generalization in the gl@lDn theory is the field - <IN,N-1>

N2

This gives: 6
S YT aON—1

Since the N=2 theory explains the multi-fractal exponents, let us double the number
of copies one more time and consider N=4:

10
— _— ~ 299
ik

Real experiments: 2.3+0.1, S.Koch et.al. (1991)

Numerical simulations: 2.33-2.35 + 0.03, Huckestein (1995); D.-H. Lee and Wang (1996)
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Conclusions

e a new proposal for the QHT
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Conclusions

e a new proposal for the QHT
e relatively simple and predictive

® some exponents are correct
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Conclusions

e a new proposal for the QHT
e relatively simple and predictive
® some exponents are correct

e relies on new results for gl(tlD)x current alg.
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