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Motivations from Mathematics and Physics 

•Anderson transitions in 2+1 dimensions  

• physics of metal-insulator transitions

• the challenge:  computing quenched disorder averages.  

• important physical examples:    Quantum Hall Transition,  
Graphene 

• new universality classes beyond percolation  
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• Supergroups in Mathematical Physics 

• Anderson transitions:  supergroups arise in Efetov’s  
supersymmetric method of computing quenched disorder averages.

•  sigma models on Lie supergroups arise in string theory on AdS 
spaces, e.g. psl(2|2) sigma models.

• Spin chains built on supergroups arise in the integrability approach 
to N=4  susy Yang-Mills.    

• various problems in statistical mechanics:  percolation,  self-
avoiding walks,   polymers,  ..... 
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Berkovits, Vafa, Witten 1999

Beisert and Staudacher 2005
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Anderson localization and 
the Quantum Hall Transition

André LeClair The Marvelous Reality of Flatland

Anderson localization and Quantum Hall Transitions

Anderson localization:

Consider free electrons moving in random,

disordered potentials in d spacial dimensions.

localized states

x=space

V(x) 

22

Consider electrons moving in a random  potential:
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Quantum critical point

Quantum Hall Effect   

*  free electrons in a magnetic field and random impurity potential

* important open problem:   critical properties of the transition,  exponents, etc.  E.g:

André LeClair The Marvelous Reality of Flatland

Quantum Hall transitions:

• Free electrons in d = 2 in a strong magnetic field

with disorder (impurities).

• The transverse conductivity σxy is quantized in

units of e2/h.

• Existence of plateaux depends on the disorder.

Transition between plateaux:

localization/delocalization transition. A new

delocalized state appears and changes the

conductivity.

• Important open problem: compute the critical

properties of the transition, e.g. the exponent ν:

∆B ∝ T 1/ν , ν ≈ 7/3

24

I. INTRODUCTION

TEX formulas for keynote

ξc ∼ (E − Ec)
ν

Disordered Dirac fermions in 2 + 1 dimensions have many important applications in con-

densed matter physics. They are theoretically interesting since they can represent new uni-

versality classes of Anderson localization/delocalization transitions. Perhaps the most im-

portant is the Chalker-Coddington network model for the quantum Hall transition (QHT)[?

], which can be mapped onto disordered Dirac fermions[? ? ]. A partial list of other ap-

plications includes to dirty superconductors [? ? ? ? ], and studies of hopping models on

bipartite lattices [? ]. More recent applications are to graphene [? ? ], where the Dirac

fermions are present from the start. The possible universality classes of disordered Dirac

fermions were classified according to their discrete symmetries in [? ]. The latter classifica-

tion contains 13 classes and is thus a minor refinement of Altland-Zirnbauer’s classification

which does not assume the Dirac structure[? ].

A number of new theoretical techniques have been developed over the last decade to

study these problems; a partial list includes for instance [? ? ? ? ? ? ? ]. For the most

part, a proper understanding of the critical points for generic disorder is still lacking. A

notable exception is the spin quantum Hall transition (SQHT). It’s network model[? ] can

also be mapped onto disordered Dirac fermions[? ]. Remarkably, the equivalent spin chain

was mapped onto 2D classical percolation by Gruzberg, Ludwig and Read[? ? ? ], and this

leads to the exact knowledge of the correlation length exponent νperc = 4/3 and density of

states exponent ρ(E) ∼ E1/7
.

For the QHT, one should also mention the replica sigma model approach of Pruisken[? ].

Although it appears to have the right ingredients as outlined in [? ], it has proved too difficult

to solve thus far, so it remains unknown whether it really does have the correct critical

point. There is also the later proposal of Zirnbauer[? ] which uses supersymmetry. Based

on symmetry and various other requirements the critical point for the QHT was proposed

to be described by a sigma model of WZNW type based on the supergroup PSL(2|2). The

model was further studied in [? ]. The main problem with this proposal is that the level

k of the PSL(2|2) WZNW model is an exactly marginal perturbation so that the model

2

,  
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A hamiltonian with Dirac structure can always be

written as

H =

(

V+ + V− −i∂z + Az

−i∂z + Az V+ − V−

)

where Az, Az, V± are random matrices.

The classification is based on the following discrete

symmetries:

• Chirality: H = −PHP−1, P 2 = 1

• Particle-hole: H = −CHT C−1, CT = ±C

• Time-reversal: H = KH∗K−1, KT = ±K

27

Universality Classes

Why Dirac fermions?      Nearly all interesting cases have 1-st order actions.

      Most general Dirac hamiltonian in 2d:   
 

V, A = V(x), A(x)  =  random potentials
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Result of the classification:

• 13 universality classes

• contains:   3  Wigner-Dyson classes 

• contains:    10  Altland-Zirnbauer classes   

• Chalker-Coddington (1988)  network model:   Dirac fermion in class GUE

• a new universality class (not  percolation)  

• Spin quantum Hall transition:   class C

• mapped to  percolation by Gruzberg,  Ludwig,  Read   (1999)  

• ν = 4/3   

• chiral Gade-Wegner class    (hopping on bipartite lattices)  

* Guruswamy, AL,Ludwig (1999)  
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Supersymmetric Disorder Averaging 
André LeClair2D and 3D QFT with applications to condensed matter and mathematical physics.

Supersymmetric Disorder Averaging:

A trick for computing disorder averaged quantities.

E.g. consider a free particle hamiltonian:

H = −
!∇2

2m
+ V (x)

where V (x) is random. We want to compute a

disorder averaged Green function:

< ψ(x)ψ†(x′) > =

∫

DV P [V ] < ψ(x)ψ†(x′) >V

where P [V ] is the probability distribution of V ,

taken to be gaussian.

< ψ(x)ψ†(x′) > =

∫

DV P [V ]
1

Z[V ]

∫

Dψe−S(ψ,V ) ψ(x)ψ†(x′)

S = i

∫

d2x ψ†Hψ

4
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André LeClair2D and 3D QFT with applications to condensed matter and mathematical physics.

Represent 1/Z as a bosonic functional integral:

1

Z(V )
=

∫

Dβ e−S(ψ→β,V )

where β are bosonic ghost fields. Can now perform

the integral over V:

< ψ(x)ψ†(x′) > =
∫

DψDβ e−Seff

• Seff is a 2D QFT containing quartic interactions in

the fermions and ghosts.

• For random Dirac fermions, Seff can always be

written as (super) current-current interactions.

Example: for the QHE one gets anisotropic

osp(2|2) current-current interactions.

• Previous work: one could not find the RG fixed

point perturbatively. Where are the critical

points? A new mechanism is needed.

5

Consider a free hamiltonian in a random potential V(x):   

We are interested in disorder averaged Green functions:  

The problem:   properly normalize the Green function at fixed V by   Z(V):    
The trick:   represent Z with bosonic ghosts:  

We can now perform the functional integral over the random potential  V:  

Seff  is an interacting quantum field theory of fermions and ghosts.      

I. INTRODUCTION

TEX formulas for keynote

ξc ∼ (E − Ec)
ν

Ψα
± = (ψα

±, βα
±), α = 1, .., N

gl(1|1)k

gl(1|1)N

gl(1|1)N ⊕ su(N)0

�ψ(x)ψ†(y)� =

�
DψDβe−Seff ψ(x)ψ†(y)

gl(N |N)

dgA

d�
= −g2

A,
dgB

d�
= +g2

B

�1, 0� ⊗ �0, 1� = �0�(4)

V�0�(4) =





χ1 ei(φ1−φ2)/
√

k

√
k

χ1χ2/
√

k

χ2 e−i(φ1−φ2)/
√

k





ψ±, β±

τq = �Γq + 2(q − 1)

2

e.g.  Schrodinger for simplicity:  
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Where are the critical points?      
• There are no perturbative fixed points at 1-loop and higher.   

• due to marginality of the interactions  

• Other approaches:  

•     Replica sigma models  (Pruisken 1984)  

•      Supergroup sigma models  (Zirnbauer  1999)  

•OUR NEW APPROACH:   Resolve  the RG flow in 2 
stages;  use super spin charge separation;     new results for gl
(1|1) current algebra;    explicit form of logarithmic operators in 
terms of symplectic fermions.  

AL  and Bernard  2002 
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ν

Ψ
α
± = (ψα

±, βα
±), α = 1, .., N

gl(1|1)k

gl(1|1)N

gl(1|1)N ⊕ su(N)0

gl(N |N)

Disordered Dirac fermions in 2 + 1 dimensions have many important applications in con-

densed matter physics. They are theoretically interesting since they can represent new uni-

versality classes of Anderson localization/delocalization transitions. Perhaps the most im-

portant is the Chalker-Coddington network model for the quantum Hall transition (QHT)[1],

which can be mapped onto disordered Dirac fermions[2, 3]. A partial list of other applica-

tions includes to dirty superconductors [4–7], and studies of hopping models on bipartite

lattices [8]. More recent applications are to graphene [9, 10], where the Dirac fermions are

present from the start. The possible universality classes of disordered Dirac fermions were

classified according to their discrete symmetries in [11]. The latter classification contains 13

classes and is thus a minor refinement of Altland-Zirnbauer’s classification which does not

assume the Dirac structure[12].

A number of new theoretical techniques have been developed over the last decade to

study these problems; a partial list includes for instance [13–19]. For the most part, a

proper understanding of the critical points for generic disorder is still lacking. A notable

exception is the spin quantum Hall transition (SQHT). It’s network model[21] can also be

2

symmetry.For any realization of the disorder the action has a  

The important super subgroup symmetry which commutes with
 permutations of the copies is:  
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=   ∫ dx   Ψ*   H  Ψ
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Introduce N-copies of the theory in order to compute multiple moments:

fields: 
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Introduce N-copies of the theory in order to compute multiple moments:

fields: 

The action at fixed realization of disorder: 

we need to introduce N -copies of the models. Namely, we introduce fields Ψα
±, α = 1, .., N ,

so that the complete set of fields is Ψr;α
± and Ψ

r;α
± , r = 1, 2. Thus Ψ+ refers to 2N different

fields.

At fixed a fixed realization of disorder, Ssusy can be expressed in the compact form:

Ssusy =

�
d2x

2π
[ Ψ−(∂z − iAz(x))Ψ+ + Ψ−(∂z − iAz(x))Ψ+ − iV (x)

�
Ψ−Ψ+ + Ψ−Ψ+

�

− iM(x)
�
Ψ−Ψ+ − Ψ−Ψ+

�
] (9)

where for example Ψ−Ψ+ =
�

r,α Ψ
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− Ψr;α

+ .

B. SQHT
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consider fields Ψr;α
±,i, i.e. there are 4N fields in Ψ+ for example. The action is then

Ssusy =

�
d2x

2π
[ Ψ−(∂z − iAz(x))Ψ+ + Ψ−(∂z − iAz(x))Ψ+ − i�α(x) ·

�
Ψ−�σΨ+ + Ψ−�σΨ+

�

− iM(x)
�
Ψ−Ψ+ − Ψ−Ψ+
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Ψ−�σΨ+ =
�

r,i,j,α Ψr;α
−,i�σijΨ

r;α
+,j.

IV. SYMMETRIES AT FIXED DISORDER.

A. QHT
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�
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α
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�
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The two point functions are
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Disordered Dirac fermions in 2 + 1 dimensions have many important applications in con-

densed matter physics. They are theoretically interesting since they can represent new uni-

versality classes of Anderson localization/delocalization transitions. Perhaps the most im-

portant is the Chalker-Coddington network model for the quantum Hall transition (QHT)[1],

which can be mapped onto disordered Dirac fermions[2, 3]. A partial list of other applica-

tions includes to dirty superconductors [4–7], and studies of hopping models on bipartite

lattices [8]. More recent applications are to graphene [9, 10], where the Dirac fermions are

present from the start. The possible universality classes of disordered Dirac fermions were

classified according to their discrete symmetries in [11]. The latter classification contains 13

classes and is thus a minor refinement of Altland-Zirnbauer’s classification which does not

assume the Dirac structure[12].

A number of new theoretical techniques have been developed over the last decade to

study these problems; a partial list includes for instance [13–19]. For the most part, a

proper understanding of the critical points for generic disorder is still lacking. A notable

exception is the spin quantum Hall transition (SQHT). It’s network model[21] can also be

2
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interesting as possible critical points; for example the gl(N |N)1 theory has only integer

scaling dimensions at level 1. In this section we constrain the possible fixed point further

by considering permutations in the number of copies.

Let PN denote the discrete permutation group for N elements. The actions Ssusy possess

this symmetry where N is the number of copies. It is natural then to make the hypothesis

that a possible fixed point also has the permutation symmetry. This appears analogous to

assuming no replica symmetry breaking in a replica approach. The BRST symmetries of the

last section do not commute with PN , however there is a sub-algebra that does, which we

will refer to as the PN invariant BRST symmetry. In section VII we will provide arguments

based on super spin-charge separation that indicate how a fixed point with this restricted

symmetry can arise under RG flow.

A. QHT

For the QHT the generators that commute with PN are

H =

�

α

ψ
α
+ψ

α
−, J =

�

α

β
α
+β

α
−, S± = ±

�

α

ψ
α
±β

α
∓ (16)

The above currents satisfy the gl(1|1)k current algebra at level k = N :

H(z)H(0) ∼ k

z2
, J(z)J(0) ∼ − k

z2

H(z)S±(0) ∼ J(z)S±(0) ∼ ±1

z
S± (17)

S+(z)S−(0) ∼ k

z2
+

1

z
(H − J)

It will be important to determine any additional continuous symmetries that commute

with the PN -invariant BRST symmetry gl(1|1)N . There is obviously an su(N) symmetry

which mixes the copies. Let L
a
ψ, L

a
β denote the su(N) currents in the separate sectors and

L
a

their sum:

L
a
ψ = ψ

α
−t

a
αα�ψ

α�

+ , L
a
β = β

α
−t

a
αα�β

α�

+ , L
a

= L
a
ψ + L

a
β (18)

where t
a

is the N × N dimensional matrix representation of the vector of su(N). The

currents Lψ satisfy su(N)1, whereas the Lβ satisfy su(N)−1. Therefore the total currents

L
a

satisfy su(N)0 at level k = 0. In summary, the symmetries that will play a significant

rôle in the sequel is gl(1|1)N ⊕ su(N)0 and these two current algebras commute.
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Critical points from Super Spin-Charge Separation

was the spin-charge separation. The resulting coset is a somewhat trivial example of the

GKO construction[52] because of the separation of the stress tensor.

In the first stage of the RG flow we consider only the disorder couplings for the PN

invariant BRST symmetries and the additional “copy” symmetries. The essential ingredient

here is the spin-charge separation[17, 33, 45]. In the first stage we will obtain a critical point

corresponding to the PN invariant BRST symmetry. In other words, in the first stage of the

RG flow we identify the massless degrees of freedom that are most important at the critical

point. In the second stage of the RG flow, we reintroduce the other kinds of disorder as

further relevant perturbations of these massless degrees of freedom.

B. QHT

The PN invariant BRST symmetry is gl(1|1)N and the copy symmetry that commutes

with it is su(N)0. Remarkably there exists the following spin-charge separation[33]:

T
N−copy
free = −1

2

N�

α=1

(ψα
−∂zψ

α
+ + β

α
−∂zβ

α
+) = Tgl(1|1)k=N

+ Tsu(N)0 (50)

where the stress tensors Tgl(1|1)N
and Tsu(N)0 are the Sugawara stress tensors for interacting

theories. Simple checks of the above result are as follows. First, all of the stress tensors

have c = 0. The free theory contains 4N fields ψ
α
±, β

α
±. Under the gl(1|1) ⊗ su(N) they

transform as (�1, 0� ⊕ �0, 1�)⊗ [vec] where [vec] is the N -dimensional vector representation

of su(N). The later has conformal dimension ∆su(N)k
= N2−1

2N(k+N) at general level k, whereas

∆�1,0� = ∆�0,1� = 1
2k2 . One sees that the dimensions add up properly: ∆�1,0� +∆su(N)0 = 1/2,

as is appropriate for the free ψ±, β± fields.

In the first stage of the RG flow we consider the action of the form eq. (48) where

GA = gl(1|1)N and GB = su(N)0. For su(N), C
adj

> 0, and it is gapped out in the flow. For

gl(1|1)N current perturbations the situation is somewhat more subtle because there are two

quadratic casimirs[16]. Consider

S = Sfree +

�
d

2
x

2π

�
g

�
JJ −HH + S+S− − S−S+

�
+ g

�(J −H)(J −H)
�

(51)

Then the 1-loop beta function for g is zero, whereas dg
�
/d� = −g

2[16]. (Here we fixed

the sign by setting some couplings to zero in the more general result in [32]. ) Therefore

these gl(1|1) current interactions are irrelevant. It is important that this is in contrast to

18

 First separate the theory into two commuting sets of degrees of freedom.    
This involves a remarkable identity for the Sugawara stress-tensors:  

*
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Critical points from Super Spin-Charge Separation
Strategy for resolving the renormalization group (RG) flow:   Based on the 
idea that the RG flow to low energies decouples massive degrees of freedom.  
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for some bilinears dA
ab, and the currents Ja

are those of the maximal symmetry, osp(2N |2N)1

for the QHT and osp(4N |4N)1 for the SQHT, and are bilinears in the fields ψ±, β±. Since the

models have the BRST symmetries for any realization of disorder, the operators OA
must be

BRST invariant, i.e. Seff has a gl(N |N) symmetry in the QHT and an osp(2N |2N) symmetry

for the SQHT. The perturbations OA
can thus be viewed as anisotropic interactions of the

maximal current algebra that are BRST invariant.

As discussed in the introduction, the perturbative RG for the simultaneous flow of all the

couplings gA does not reveal a fixed point. In order to resolve this difficulty, we propose to

perform the RG in two stages, with special attention paid to the symmetries that exist at

any realization of disorder.

We will need the following general property. Consider two commuting current algebras

GA and GB with currents JA, JB. Furthermore, let us suppose that the stress tensor for a

given conformal theory separates as follows:

Tcft = TGA + TGB (47)

Consider the perturbation of the conformal field theory by left-right current-current pertur-

bations:

S = Scft +

�
d2x

2π

�
gA JA · JA + gB JB · JB

�
(48)

where J · J is the invariant built on the quadratic casimir. Since the currents commute, the

RG beta-functions decouple; to 1-loop the result is:

dgA

d�
= Cadj

A g2
A,

dgB

d�
= Cadj

B g2
B (49)

where � is the logarithm of the length scale and Cadj
A is the casimir for the adjoint rep-

resentation of the finite dimensional part of GA. Let us suppose that the physical regime

corresponds to positive gA,B. If Cadj
B is positive, then the coupling gB is marginally rele-

vant and the flow is to infinity. This is a massive sector and the GB degrees of freedom

are “gapped out” in the RG flow. If Cadj
A is negative, then the coupling gA is marginally

irrelevant. This results in the fixed point characterized by the GA current algebra. If the

original conformal field theory corresponds to the current algebra Gmax, then the fixed point

may be viewed as the coset Gmax/GB. This scenario was proposed for generic fixed points of

marginal current-current perturbations in [32], however what was missing in the argument
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Disordered Dirac fermions in 2 + 1 dimensions have many important applications in con-

densed matter physics. They are theoretically interesting since they can represent new uni-

versality classes of Anderson localization/delocalization transitions. Perhaps the most im-

portant is the Chalker-Coddington network model for the quantum Hall transition (QHT)[1],

which can be mapped onto disordered Dirac fermions[2, 3]. A partial list of other applica-

tions includes to dirty superconductors [4–7], and studies of hopping models on bipartite

lattices [8]. More recent applications are to graphene [9, 10], where the Dirac fermions are

present from the start. The possible universality classes of disordered Dirac fermions were

classified according to their discrete symmetries in [11]. The latter classification contains 13

classes and is thus a minor refinement of Altland-Zirnbauer’s classification which does not

assume the Dirac structure[12].

A number of new theoretical techniques have been developed over the last decade to

study these problems; a partial list includes for instance [13–19]. For the most part, a
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Critical points from Super Spin-Charge Separation
Strategy for resolving the renormalization group (RG) flow:   Based on the 
idea that the RG flow to low energies decouples massive degrees of freedom.  

Since  gA   (gB ) is marginally irrelevant (relevant)  only the su(N) degrees of freedom are 
gapped out in the flow.     First stage:   flow to  gl(1|1)N 

was the spin-charge separation. The resulting coset is a somewhat trivial example of the

GKO construction[52] because of the separation of the stress tensor.

In the first stage of the RG flow we consider only the disorder couplings for the PN

invariant BRST symmetries and the additional “copy” symmetries. The essential ingredient

here is the spin-charge separation[17, 33, 45]. In the first stage we will obtain a critical point

corresponding to the PN invariant BRST symmetry. In other words, in the first stage of the

RG flow we identify the massless degrees of freedom that are most important at the critical

point. In the second stage of the RG flow, we reintroduce the other kinds of disorder as

further relevant perturbations of these massless degrees of freedom.

B. QHT

The PN invariant BRST symmetry is gl(1|1)N and the copy symmetry that commutes

with it is su(N)0. Remarkably there exists the following spin-charge separation[33]:

T
N−copy
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+ Tsu(N)0 (50)

where the stress tensors Tgl(1|1)N
and Tsu(N)0 are the Sugawara stress tensors for interacting

theories. Simple checks of the above result are as follows. First, all of the stress tensors

have c = 0. The free theory contains 4N fields ψ
α
±, β

α
±. Under the gl(1|1) ⊗ su(N) they

transform as (�1, 0� ⊕ �0, 1�)⊗ [vec] where [vec] is the N -dimensional vector representation

of su(N). The later has conformal dimension ∆su(N)k
= N2−1

2N(k+N) at general level k, whereas

∆�1,0� = ∆�0,1� = 1
2k2 . One sees that the dimensions add up properly: ∆�1,0� +∆su(N)0 = 1/2,

as is appropriate for the free ψ±, β± fields.

In the first stage of the RG flow we consider the action of the form eq. (48) where

GA = gl(1|1)N and GB = su(N)0. For su(N), C
adj

> 0, and it is gapped out in the flow. For

gl(1|1)N current perturbations the situation is somewhat more subtle because there are two

quadratic casimirs[16]. Consider
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Then the 1-loop beta function for g is zero, whereas dg
�
/d� = −g

2[16]. (Here we fixed

the sign by setting some couplings to zero in the more general result in [32]. ) Therefore

these gl(1|1) current interactions are irrelevant. It is important that this is in contrast to
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for some bilinears dA
ab, and the currents Ja

are those of the maximal symmetry, osp(2N |2N)1

for the QHT and osp(4N |4N)1 for the SQHT, and are bilinears in the fields ψ±, β±. Since the

models have the BRST symmetries for any realization of disorder, the operators OA
must be

BRST invariant, i.e. Seff has a gl(N |N) symmetry in the QHT and an osp(2N |2N) symmetry
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can thus be viewed as anisotropic interactions of the
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where � is the logarithm of the length scale and Cadj
A is the casimir for the adjoint rep-

resentation of the finite dimensional part of GA. Let us suppose that the physical regime

corresponds to positive gA,B. If Cadj
B is positive, then the coupling gB is marginally rele-

vant and the flow is to infinity. This is a massive sector and the GB degrees of freedom

are “gapped out” in the RG flow. If Cadj
A is negative, then the coupling gA is marginally

irrelevant. This results in the fixed point characterized by the GA current algebra. If the
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Solution of the gl(1|1)k  theory 

Free field representation:        two scalar field and a symplectic fermion:

VI. THE gl(1|1)k AND osp(2|2)k SUPER CURRENT ALGEBRAS.

In this section we summarize the main results we will need for the current algebras

gl(1|1)k and osp(2|2)k. For gl(1|1)k we mainly summarize our recent work[33], which builds

on [46, 47]. The osp(2|2) results are based on the work[15].

A. gl(1|1)k

We will need the Sugawara stress tensor T (z). The algebra gl(1|1) has two independent

quadratic casimirs:

C2 = J
2 −H

2 + S
+
S
− − S

−
S

+
, C

�
2 = (J −H)2 (20)

where it is implicit that the above operators are the zero modes of the currents. The stress

tensor is fixed by the condition T (z)Ja(0) ∼ J
a(0)/z2, which requires it to be built out of

both casimirs[48]:

T (z) = − 1

2k

�
J

2 −H
2 + S+S− − S−S+

�
+

1

2k2
(J −H)2 (21)

For any level k there exists a free field representation in terms of 2 scalar fields and a

symplectic fermion. The free fields have the action

S =
1

8π

�
d

2
x

2�

a,b=1

�
ηab∂µφφφ

a
∂µφφφ

b + �ab∂µχχχ
a
∂µχχχ

b
�

(22)

where

η =

�
1 0

0 −1

�
, � =

�
0 1

−1 0

�
(23)

and ∂
2
µ = 2∂z∂z. The χχχ fields are Grassman: (χχχa)2 = 0 and have Virasoro central charge

c = −2, so that the total central charge is zero. Note that the metric for the bosonic fields

has indefinite signature, which will turn out to be important. The equations of motion imply

that the fields can be decomposed into left and right moving parts:

φφφ
a(z, z) = φ

a(z) + φ
a
(z) (24)

χχχ
a(z, z) = χ

a(z) + χ
a(z)

Above, the bold face signifies local fields. The two point functions are

�φa(z)φb(w)� = −η
ab log(z − w), �χa(z)χb(w)� = −�

ab log(z − w) (25)

13

(Our conventions are η
ab = ηab, �

ab = �ab.) Exponentials of the bosons have the conformal

dimension:

∆

�
e
i(aφ1+bφ2)

�
=

a
2 − b

2

2
(26)

It is straightforward to verify the following representation of the OPE’s in eq. (17):

H = i

√
k ∂zφ

1
, J = i

√
k ∂zφ

2
(27)

S+ =
√

k ∂zχ
1
e
i(φ1−φ2)/

√
k
, S− = −

√
k ∂zχ

2
e
−i(φ1−φ2)/

√
k

In the sequel, where there is no cause for confusion, we will simply write ∂φ for ∂zφ(z).

The algebra gl(1|1) has 2-dimensional representations where H = diag(h, h − 1) and

J = diag(j, j − 1) which will be denoted as �h, j�. (We follow the conventions in [33].)

These are so-called typical representations when h �= j. Primary fields associated with these

representations have conformal dimension

∆�h,j� =
(h− j)2

2k2
+

(h− j)(h + j − 1)

2k
(28)

The basic fields ψ±, β± are in the fundamental representations:

(ψ+, β+) ↔ �1, 0�, (β−, ψ−) ↔ �0, 1� (29)

and have scaling dimension 1/2 when k = 1.

The tensor product of two typical representations is

�h1, j1�⊗�h2, j2� = �h1 + h2, j1 + j2�⊕�h1 + h2 − 1, j1 + j2 − 1�, (h1 +h2 �= j1 +j2) (30)

When h1 + h2 = j1 + j2 the tensor product gives a new reducible but indecomposable

4-dimensional representation denoted �h�(4):

�h1, j1� ⊗ �h2, j2� = �h1 + h2 − 1�(4) (31)

These representations have ∆�h�(4) = 0, however they are logarithmic since the casimir C2 is

not diagonal.

The vertex operators V�h,j� can be explicitly constructed in the free field theory, and

require the twist fields in the symplectic fermion sector[33]. As for the spin fields of the

Ising model, the twist fields modify the boundary conditions of the fundamental field χ:

χ
1
(e

2πi
z)µλ(0) = e

−2πiλ
χ

1
(z)µλ(0) (32)

χ
2
(e

2πi
z)µλ(0) = e

2πiλ
χ

2
(z)µλ(0)
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1
e
i(φ1−φ2)/

√
k
, S− = −

√
k ∂zχ

2
e
−i(φ1−φ2)/

√
k

In the sequel, where there is no cause for confusion, we will simply write ∂φ for ∂zφ(z).

The algebra gl(1|1) has 2-dimensional representations where H = diag(h, h − 1) and

J = diag(j, j − 1) which will be denoted as �h, j�. (We follow the conventions in [33].)

These are so-called typical representations when h �= j. Primary fields associated with these

representations have conformal dimension

∆�h,j� =
(h− j)2

2k2
+

(h− j)(h + j − 1)

2k
(28)

The basic fields ψ±, β± are in the fundamental representations:

(ψ+, β+) ↔ �1, 0�, (β−, ψ−) ↔ �0, 1� (29)

and have scaling dimension 1/2 when k = 1.

The tensor product of two typical representations is

�h1, j1�⊗�h2, j2� = �h1 + h2, j1 + j2�⊕�h1 + h2 − 1, j1 + j2 − 1�, (h1 +h2 �= j1 +j2) (30)

When h1 + h2 = j1 + j2 the tensor product gives a new reducible but indecomposable

4-dimensional representation denoted �h�(4):

�h1, j1� ⊗ �h2, j2� = �h1 + h2 − 1�(4) (31)

These representations have ∆�h�(4) = 0, however they are logarithmic since the casimir C2 is

not diagonal.

The vertex operators V�h,j� can be explicitly constructed in the free field theory, and

require the twist fields in the symplectic fermion sector[33]. As for the spin fields of the

Ising model, the twist fields modify the boundary conditions of the fundamental field χ:

χ
1
(e

2πi
z)µλ(0) = e

−2πiλ
χ

1
(z)µλ(0) (32)

χ
2
(e

2πi
z)µλ(0) = e

2πiλ
χ

2
(z)µλ(0)

14

Twist fields:

The properties of these fields were studied in[49]. It is clear from the above equation that

2πλ is a phase and is restricted to −1 < λ < 1. We also need the doublet of twist fields σa
λ,

which arise in the OPE:

∂χ1
(z)µλ(0) ∼

√
1− λ

zλ
σ1

λ, ∂χ2
(z)µλ(0) ∼

√
λ

z1−λ
σ2

λ (33)

The conformal dimensions of the twist fields are

∆(µλ) =
λ(λ− 1)

2
≡ ∆

(χ)
λ , ∆(σ1

λ) = ∆
(χ)
λ−1, ∆(σ2

λ) = ∆
(χ)
λ+1 (34)

The vertex operator for V�h,j� requires twist fields with λ = (h− j)/k. For h > j:

V�h,j� = (h− j)1/4

�
−µλ ei(hφ1−jφ2)/

√
k

σ2
λ ei((h−1)φ1−(j−1)φ2)/

√
k

�
, λ =

h− j

k
(35)

whereas for h < j:

V�h,j� = (j − h)
1/4

�
σ1

1+λ ei(hφ1−jφ2)/
√

k

µλ+1 ei((h−1)φ1−(j−1)φ2)/
√

k

�
, λ =

h− j

k
(36)

The vertex operator V�h�(4) for the representation �h�(4) is constructed from the logarithmic

field �abχaχb:

V�h�(4) =





χ1 ei(h+1)(φ1−φ2)/
√

k

√
k eih(φ1−φ2)/

√
k

1√
k
χ1χ2 eih(φ1−φ2)/

√
k

χ2 ei(h−1)(φ1−φ2)/
√

k




(37)

The two middle fields form a logarithmic pair with ∆ = 0. It is important that the above log-

arithmic field has a simple and explicit construction in the second-order symplectic fermion

theory; this is not transparent in the minimal model description of c = −2, nor in the

first-order description. For a review of logarithmic conformal field theory, see [50, 51].

A closed operator algebra is obtained when k is an integer and the spectrum of fields

V�h,j� is restricted to h, j integers satisfying

−k ≤ h− j ≤ k (38)

This operator algebra can be viewed as generated by OPE’s of the fundamental vertex

operators V�1,0� and V�0,1�. For instance:

V�1,0�(z)V�0,1�(0) ∼ 1

z1/k2 V�0�(4) (39)
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The corresponding vertex operator: 

(Our conventions are η
ab = ηab, �

ab = �ab.) Exponentials of the bosons have the conformal

dimension:
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In the sequel, where there is no cause for confusion, we will simply write ∂φ for ∂zφ(z).

The algebra gl(1|1) has 2-dimensional representations where H = diag(h, h − 1) and

J = diag(j, j − 1) which will be denoted as �h, j�. (We follow the conventions in [33].)

These are so-called typical representations when h �= j. Primary fields associated with these

representations have conformal dimension

∆�h,j� =
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The basic fields ψ±, β± are in the fundamental representations:
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The tensor product of two typical representations is

�h1, j1�⊗�h2, j2� = �h1 + h2, j1 + j2�⊕�h1 + h2 − 1, j1 + j2 − 1�, (h1 +h2 �= j1 +j2) (30)

When h1 + h2 = j1 + j2 the tensor product gives a new reducible but indecomposable

4-dimensional representation denoted �h�(4):
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require the twist fields in the symplectic fermion sector[33]. As for the spin fields of the

Ising model, the twist fields modify the boundary conditions of the fundamental field χ:
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Conformal scaling 
dimension: 

Closed operator algebra:   -k <  h-j  <  k  h,j,k = integers  
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theory; this is not transparent in the minimal model description of c = −2, nor in the
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J = diag(j, j − 1) which will be denoted as �h, j�. (We follow the conventions in [33].)

These are so-called typical representations when h �= j. Primary fields associated with these

representations have conformal dimension
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The basic fields ψ±, β± are in the fundamental representations:

(ψ+, β+) ↔ �1, 0�, (β−, ψ−) ↔ �0, 1� (29)

and have scaling dimension 1/2 when k = 1.

The tensor product of two typical representations is

�h1, j1�⊗�h2, j2� = �h1 + h2, j1 + j2�⊕�h1 + h2 − 1, j1 + j2 − 1�, (h1 +h2 �= j1 +j2) (30)
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4-dimensional representation denoted �h�(4):
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1
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Conformal scaling 
dimension: 

IV. FINITE DIMENSIONAL REPRESENTATIONS OF gl(1|1).

The complete solution of the current algebra as a quantum field theory requires the

determination of the spectrum of fields. The chiral primary fields Vr (z) transform as finite

dimensional representations r of gl(1|1), which is equivalent to the OPE:

Ja(z) Vr(0) ∼
1

z
ta
r
Vr (0) (15)

where Ja, a = 1, ., 4 are the gl(1|1)k currents and ta
r

is the finite dimensional matrix repre-

sentation of r of gl(1|1). (In the sequel we will continue to refer to general super-currents

as Ja.)

Before explicitly constructing the primary fields Vr , we first describe the relevant finite

dimensional representations[13, 24, 25]. The gl(1|1) algebra has the following non-zero (anti)

commutation relations:

[H, S±] = [J, S±] = ±S±, {S+, S−} = H − J (16)

The fermionic operators are nilpotent: S2
± = 0. (It is implicit that the above generators

are the zero modes of the currents.) First, there are one-dimensional representations where

S± = 0, H = J = h. We will denote these as 〈h〉(1).

The so-called typical representations are two-dimensional:

H =

(
h 0

0 h − 1

)

, J =

(
j 0

0 j − 1

)

(17)

S+ =

(
0 b

0 0

)

, S− =

(
0 0

c 0

)

(18)

where bc = h − j. Let us denote these representations as 〈h, j〉. When h %= j these

representations are irreducible. The tensor product of two typical representations can be

deduced by simply considering the U(1)’s:

〈h1, j1〉 ⊗ 〈h2, j2〉 = 〈h1 + h2, j1 + j2〉 ⊕ 〈h1 + h2 − 1, j1 + j2 − 1〉 (19)

When h = j, the representations are reducible but indecomposible. There are two dif-

ferent representations depending on whether b or c equals zero. For b = 0, the repre-

sentation will be referred to as 〈h, h〉 and for c = 0 as 〈h, h〉′. They can be reduced as

〈h, h〉 = 〈h〉(1) ⊕〈h − 1〉(1) however they are indecomposable since S− : 〈h〉(1) → 〈h − 1〉(1).

7

2-dimensional reps  <h,j>:   ( bc = h-j  )

Closed operator algebra:   -k <  h-j  <  k  h,j,k = integers  
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I. INTRODUCTION

TEX formulas for keynote

ξc ∼ (E − Ec)
ν

Ψ
α
± = (ψα

±, βα
±), α = 1, .., N

gl(1|1)k

gl(1|1)N

gl(1|1)N ⊕ su(N)0

gl(N |N)

dgA

d�
= −g2

A,
dgB

d�
= +g2

B

�1, 0� ⊗ �0, 1� = �0�(4)

V�0�(4) =





χ1
e
i(φ1−φ2)/

√
k

√
k

χ1χ2/
√

k

χ2
e
−i(φ1−φ2)/

√
k





Disordered Dirac fermions in 2 + 1 dimensions have many important applications in con-

densed matter physics. They are theoretically interesting since they can represent new uni-

versality classes of Anderson localization/delocalization transitions. Perhaps the most im-

portant is the Chalker-Coddington network model for the quantum Hall transition (QHT)[1],

which can be mapped onto disordered Dirac fermions[2, 3]. A partial list of other applica-

tions includes to dirty superconductors [4–7], and studies of hopping models on bipartite

lattices [8]. More recent applications are to graphene [9, 10], where the Dirac fermions are
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2

Corresponding vertex operator  (Δ=0):   

4-dimensional  indecomposable reps    <0>4 : When h = j, the vertex operators for the representations 〈h, h〉 and 〈h, h〉′ are

V〈h,h〉 =

(
χ1 Vφ

h,h

−
√

k Vφ
h−1,h−1

)

, V〈h,h〉′ =

(
−
√

k Vφ
h,h

χ2 Vφ
h−1,h−1

)

(45)

The vertex operators for 〈h〉(4) are novel because they are logarithmic. The zero modes

of the χ fields span a 4-dimensional vector space |0〉, χ1|0〉, χ2|0〉, χ1χ2|0〉, and the vertex

operator is built on this structure:

V〈h〉(4) =






χ1 Vφ
h+1,h+1√

k Vφ
h,h

χ1χ2 Vφ
h,h/

√
k

χ2 Vφ
h−1,h−1






(46)

The two middle fields "′0 =
√

kVφ
h,h, "′ = χ1χ2Vφ

h,h/
√

k form a logarithmic pair (25) with

∆ = 0 and a = −1/k since "0 = 1 and "(z) in eq. (29) form such a pair. As explained in

[3], this logarithmic property is reflected in the fact that the casimir C2 is not diagonal for

〈h〉(4), eq. (23). Using the Sugawara form (9) and eq. (23), one indeed sees that on 〈h〉(4):

L0 = −
1

k






0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0






(47)

where L0 is the zero mode of T (z) =
∑

n Lnz−n−2, which is consistent with the form of the

vertex operator eq. (46).

VII. CLOSED OPERATOR ALGEBRAS AND THE SPECTRUM OF FIELDS

As for ordinary current algebras, not all representations of gl(1|1) correspond to primary

fields. For example, for su(2)k, only the primary fields with spin j ≤ k/2 are present in the

spectrum[30]. For gl(1|1)k there are similar restrictions depending on the level k. Since the

twist fields µλ are defined for −1 ≤ λ ≤ 1 and the vertex operators V〈h,j〉 involve λ = h−j
k ,

it is clear that:

− k ≤ h − j ≤ k (48)

The above restriction can also be understood directly in the affine super-algebra. Let

|h, j〉hw denote a highest weight state satisfying

S±
n |h, j〉hw = S+

0 |h, j〉hw = 0, n > 0 (49)

13

Logarithmic property:       Virasoro zero mode is not diagonal   (Jordan block form)

(similar properties found  for osp(2|2) by Maassarani and Serban  1997)  
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lattices [8]. More recent applications are to graphene [9, 10], where the Dirac fermions are
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Corresponding vertex operator  (Δ=0):   

4-dimensional  indecomposable reps    <0>4 : When h = j, the vertex operators for the representations 〈h, h〉 and 〈h, h〉′ are

V〈h,h〉 =

(
χ1 Vφ

h,h

−
√

k Vφ
h−1,h−1

)

, V〈h,h〉′ =

(
−
√

k Vφ
h,h

χ2 Vφ
h−1,h−1

)

(45)

The vertex operators for 〈h〉(4) are novel because they are logarithmic. The zero modes

of the χ fields span a 4-dimensional vector space |0〉, χ1|0〉, χ2|0〉, χ1χ2|0〉, and the vertex

operator is built on this structure:

V〈h〉(4) =






χ1 Vφ
h+1,h+1√

k Vφ
h,h

χ1χ2 Vφ
h,h/

√
k

χ2 Vφ
h−1,h−1






(46)

The two middle fields "′0 =
√

kVφ
h,h, "′ = χ1χ2Vφ

h,h/
√

k form a logarithmic pair (25) with

∆ = 0 and a = −1/k since "0 = 1 and "(z) in eq. (29) form such a pair. As explained in

[3], this logarithmic property is reflected in the fact that the casimir C2 is not diagonal for

〈h〉(4), eq. (23). Using the Sugawara form (9) and eq. (23), one indeed sees that on 〈h〉(4):

L0 = −
1

k






0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0






(47)

where L0 is the zero mode of T (z) =
∑

n Lnz−n−2, which is consistent with the form of the

vertex operator eq. (46).

VII. CLOSED OPERATOR ALGEBRAS AND THE SPECTRUM OF FIELDS

As for ordinary current algebras, not all representations of gl(1|1) correspond to primary

fields. For example, for su(2)k, only the primary fields with spin j ≤ k/2 are present in the

spectrum[30]. For gl(1|1)k there are similar restrictions depending on the level k. Since the

twist fields µλ are defined for −1 ≤ λ ≤ 1 and the vertex operators V〈h,j〉 involve λ = h−j
k ,

it is clear that:

− k ≤ h − j ≤ k (48)

The above restriction can also be understood directly in the affine super-algebra. Let

|h, j〉hw denote a highest weight state satisfying

S±
n |h, j〉hw = S+

0 |h, j〉hw = 0, n > 0 (49)

13

Logarithmic property:       Virasoro zero mode is not diagonal   (Jordan block form)
 ( due to the log pair   (1,  χ1 χ2 )  )

(similar properties found  for osp(2|2) by Maassarani and Serban  1997)  
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Logarithmic perturbations

Quantum numbers:  
* under the gl(1|1) x su(N)  symmetries:

corresponds to positive gA,B. If Cadj
B is positive, then the coupling gB is marginally rele-

vant and the flow is to infinity. This is a massive sector and the GB degrees of freedom

are “gapped out” in the RG flow. If Cadj
A is negative, then the coupling gA is marginally

irrelevant. This results in the fixed point characterized by the GA current algebra. If the

original conformal field theory corresponds to the current algebra Gmax, then the fixed point

may be viewed as the coset Gmax/GB. This scenario was proposed for generic fixed points of

marginal current-current perturbations in [31], however what was missing in the argument

was the spin-charge separation. The resulting coset is a somewhat trivial example of the

GKO construction[51] because of the separation of the stress tensor.

In the first stage of the RG flow we consider only the disorder couplings for the PN

invariant BRST symmetries and the additional “copy” symmetries. The essential ingredient

here is the spin-charge separation[17, 32, 44]. In the first stage we will obtain a critical point

corresponding to the PN invariant BRST symmetry. In other words, in the first stage of the

RG flow we identify the massless degrees of freedom that are most important at the critical

point. In the second stage of the RG flow, we reintroduce the other kinds of disorder as

further relevant perturbations of these massless degrees of freedom.

B. QHT

The PN invariant BRST symmetry is gl(1|1)N and the copy symmetry that commutes

with it is su(N)0. Remarkably there exists the following spin-charge separation[32]:

TN−copy
free = −

1

2

N∑

α=1

(ψα
−∂zψ

α
+ + βα

−∂zβ
α
+) = Tgl(1|1)k=N

+ Tsu(N)0 (50)

where the stress tensors Tgl(1|1)N
and Tsu(N)0 are the Sugawara stress tensors for interacting

theories. Simple checks of the above result are as follows. First, all of the stress tensors

have c = 0. The free theory contains 4N fields ψα
±, βα

±. Under the gl(1|1) ⊗ su(N) they

transform as (〈1, 0〉 ⊕ 〈0, 1〉) ⊗ [vec] where [vec] is the N -dimensional vector representation

of su(N). The later has conformal dimension ∆su(N)k
= N2−1

2N(k+N) at general level k, whereas

∆〈1,0〉 = ∆〈0,1〉 = 1
2k2 . One sees that the dimensions add up properly: ∆〈1,0〉 +∆su(N)0 = 1/2,

as is appropriate for the free ψ±, β± fields.

In the first stage of the RG flow we consider the action of the form eq. (48) where

GA = gl(1|1)N and GB = su(N)0. For su(N), Cadj > 0, and it is gapped out in the flow. For
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ψ±, β±

Disordered Dirac fermions in 2 + 1 dimensions have many important applications in con-

densed matter physics. They are theoretically interesting since they can represent new uni-

versality classes of Anderson localization/delocalization transitions. Perhaps the most im-

portant is the Chalker-Coddington network model for the quantum Hall transition (QHT)[1],

2

↔
* currents= bilinears in these fields.  Examining the quantum numbers:         
    For N<2  the most relevant operator corresponds to   <0>(4) .     Leads to:

Let Φr(z, z) denote the gl(1|1) invariant local field associated with the representation r

of gl(1|1) with scaling dimension 2∆r . It can be expressed as a product of left-right vertex

operators Vr · V r . For general N , the fields Φ�2,0�,Φ�−1,1�,Φ�0,2� and Φ�1,−1� are expressed

in terms of the twist fields µλ and σa
λ with λ = 2/N, 1 − 2/N . Explicit expressions can be

found in [33]. The field Φ�0�(4) on the other hand requires only the symplectic fermion and

bosons, and for N ≤ 2 it is the most relevant operator. If we keep only the most relevant

operator, then we should consider

S = Sgl(1|1)N
+

�
d2x

8π
Φ�0�(4) (54)

=

�
d2x

8π

�
2�

a,b=1

ηab ∂µφ
a∂µφ

b
+ �ab ∂µχ

a∂µχ
b

+ g χ1χ2
cos

�
(φ1 − φ2

)/
√

N
��

where here, and henceforth, φ, χ are the local fields φφφ,χχχ.

The case of N = 2 is distinct since both Φ�0,2� and Φ�1,−1� have ∆ = 0 which is degenerate

with the dimension of Φ�0�(4) , so that the latter is no longer the most relevant operator. The

explicit forms at N = 2 are [33]:

Φ�1,−1� − �Φ�0,2� = 4χ1χ2
cos

�
(φ1

+ φ2
)/
√

2

�
+ 4(∂µχ

1∂µχ
2
)(χ1χ2

) cos(
√

2φ2
) (55)

(�Φ�0,2� only differs from Φ�0,2� by some fermionic exchange signs.) For N > 2 the opera-

tors Φ�0,2� become more relevant than Φ�0�(4) and may need to be included as additional

perturbations in eq. (54).

The important feature of logarithmic perturbations such as eq. (54) is that they should

not drive the theory to another fixed point, but rather just give logarithmic corrections to

correlation functions. General arguments were given in [33, 38]. For the concrete model eq.

(54) this is easy to see since, due to the indefinite signature of the scalar fields, the OPE of

the exponentials is regular:

e
ia(φ1−φ2)(z)

e
ib(φ1−φ2)(0) ∼ regular (56)

This implies that in conformal perturbation theory the perturbation behaves like a mass term

χ1χ2, and does not lead to contributions to the beta function. A contribution to the beta

function for g would require a singular term in the OPE of the form Φ�0�(4)(x)Φ�0�(4)(0) ∼

Φ�0�(4) , however there is no such term. This will be an important property in the sequel since

it implies that the logarithmic perturbations essentially do not change the critical exponents.
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Logarithmic perturbations

Additional disorder as perturbations of  the gl(1|1)  cft:

*   in  the  original theory they correspond to  left/right current interactions. 

*   after gapping out the su(N)0   degrees of freedom,   additional disorder             
     corresponds to relevant perturbations consistent with quantum numbers.

Quantum numbers:  
* under the gl(1|1) x su(N)  symmetries:

corresponds to positive gA,B. If Cadj
B is positive, then the coupling gB is marginally rele-

vant and the flow is to infinity. This is a massive sector and the GB degrees of freedom

are “gapped out” in the RG flow. If Cadj
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irrelevant. This results in the fixed point characterized by the GA current algebra. If the
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as is appropriate for the free ψ±, β± fields.
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Disordered Dirac fermions in 2 + 1 dimensions have many important applications in con-

densed matter physics. They are theoretically interesting since they can represent new uni-

versality classes of Anderson localization/delocalization transitions. Perhaps the most im-

portant is the Chalker-Coddington network model for the quantum Hall transition (QHT)[1],

2

↔
* currents= bilinears in these fields.  Examining the quantum numbers:         
    For N<2  the most relevant operator corresponds to   <0>(4) .     Leads to:

Let Φr(z, z) denote the gl(1|1) invariant local field associated with the representation r

of gl(1|1) with scaling dimension 2∆r . It can be expressed as a product of left-right vertex

operators Vr · V r . For general N , the fields Φ�2,0�,Φ�−1,1�,Φ�0,2� and Φ�1,−1� are expressed

in terms of the twist fields µλ and σa
λ with λ = 2/N, 1 − 2/N . Explicit expressions can be

found in [33]. The field Φ�0�(4) on the other hand requires only the symplectic fermion and

bosons, and for N ≤ 2 it is the most relevant operator. If we keep only the most relevant

operator, then we should consider

S = Sgl(1|1)N
+

�
d2x

8π
Φ�0�(4) (54)

=

�
d2x

8π

�
2�

a,b=1

ηab ∂µφ
a∂µφ

b
+ �ab ∂µχ

a∂µχ
b

+ g χ1χ2
cos

�
(φ1 − φ2

)/
√

N
��

where here, and henceforth, φ, χ are the local fields φφφ,χχχ.

The case of N = 2 is distinct since both Φ�0,2� and Φ�1,−1� have ∆ = 0 which is degenerate

with the dimension of Φ�0�(4) , so that the latter is no longer the most relevant operator. The

explicit forms at N = 2 are [33]:

Φ�1,−1� − �Φ�0,2� = 4χ1χ2
cos

�
(φ1

+ φ2
)/
√

2

�
+ 4(∂µχ

1∂µχ
2
)(χ1χ2

) cos(
√

2φ2
) (55)

(�Φ�0,2� only differs from Φ�0,2� by some fermionic exchange signs.) For N > 2 the opera-

tors Φ�0,2� become more relevant than Φ�0�(4) and may need to be included as additional

perturbations in eq. (54).

The important feature of logarithmic perturbations such as eq. (54) is that they should

not drive the theory to another fixed point, but rather just give logarithmic corrections to

correlation functions. General arguments were given in [33, 38]. For the concrete model eq.

(54) this is easy to see since, due to the indefinite signature of the scalar fields, the OPE of

the exponentials is regular:

e
ia(φ1−φ2)(z)

e
ib(φ1−φ2)(0) ∼ regular (56)

This implies that in conformal perturbation theory the perturbation behaves like a mass term

χ1χ2, and does not lead to contributions to the beta function. A contribution to the beta

function for g would require a singular term in the OPE of the form Φ�0�(4)(x)Φ�0�(4)(0) ∼

Φ�0�(4) , however there is no such term. This will be an important property in the sequel since

it implies that the logarithmic perturbations essentially do not change the critical exponents.
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*  The above action defines a gl(1|1)  version of sine-Gordon theory.  

*  The logarithmic perturbations do not  drive the theory to a new fixed point:

Let Φr(z, z) denote the gl(1|1) invariant local field associated with the representation r

of gl(1|1) with scaling dimension 2∆r . It can be expressed as a product of left-right vertex

operators Vr · V r . For general N , the fields Φ�2,0�,Φ�−1,1�,Φ�0,2� and Φ�1,−1� are expressed

in terms of the twist fields µλ and σa
λ with λ = 2/N, 1 − 2/N . Explicit expressions can be

found in [33]. The field Φ�0�(4) on the other hand requires only the symplectic fermion and

bosons, and for N ≤ 2 it is the most relevant operator. If we keep only the most relevant

operator, then we should consider
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N
��

where here, and henceforth, φ, χ are the local fields φφφ,χχχ.

The case of N = 2 is distinct since both Φ�0,2� and Φ�1,−1� have ∆ = 0 which is degenerate

with the dimension of Φ�0�(4) , so that the latter is no longer the most relevant operator. The

explicit forms at N = 2 are [33]:

Φ�1,−1� − �Φ�0,2� = 4χ1χ2
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)/
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) (55)

(�Φ�0,2� only differs from Φ�0,2� by some fermionic exchange signs.) For N > 2 the opera-

tors Φ�0,2� become more relevant than Φ�0�(4) and may need to be included as additional

perturbations in eq. (54).

The important feature of logarithmic perturbations such as eq. (54) is that they should

not drive the theory to another fixed point, but rather just give logarithmic corrections to

correlation functions. General arguments were given in [33, 38]. For the concrete model eq.

(54) this is easy to see since, due to the indefinite signature of the scalar fields, the OPE of

the exponentials is regular:

e
ia(φ1−φ2)(z)

e
ib(φ1−φ2)(0) ∼ regular (56)

This implies that in conformal perturbation theory the perturbation behaves like a mass term

χ1χ2, and does not lead to contributions to the beta function. A contribution to the beta

function for g would require a singular term in the OPE of the form Φ�0�(4)(x)Φ�0�(4)(0) ∼

Φ�0�(4) , however there is no such term. This will be an important property in the sequel since

it implies that the logarithmic perturbations essentially do not change the critical exponents.
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bosons, and for N ≤ 2 it is the most relevant operator. If we keep only the most relevant

operator, then we should consider

S = Sgl(1|1)N
+

�
d2x

8π
Φ�0�(4) (54)

=

�
d2x

8π

�
2�

a,b=1

ηab ∂µφ
a∂µφ

b
+ �ab ∂µχ

a∂µχ
b

+ g χ1χ2
cos

�
(φ1 − φ2

)/
√

N
��

where here, and henceforth, φ, χ are the local fields φφφ,χχχ.

The case of N = 2 is distinct since both Φ�0,2� and Φ�1,−1� have ∆ = 0 which is degenerate

with the dimension of Φ�0�(4) , so that the latter is no longer the most relevant operator. The

explicit forms at N = 2 are [33]:
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)/
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(�Φ�0,2� only differs from Φ�0,2� by some fermionic exchange signs.) For N > 2 the opera-

tors Φ�0,2� become more relevant than Φ�0�(4) and may need to be included as additional

perturbations in eq. (54).

The important feature of logarithmic perturbations such as eq. (54) is that they should

not drive the theory to another fixed point, but rather just give logarithmic corrections to

correlation functions. General arguments were given in [33, 38]. For the concrete model eq.

(54) this is easy to see since, due to the indefinite signature of the scalar fields, the OPE of

the exponentials is regular:

e
ia(φ1−φ2)(z)

e
ib(φ1−φ2)(0) ∼ regular (56)

This implies that in conformal perturbation theory the perturbation behaves like a mass term

χ1χ2, and does not lead to contributions to the beta function. A contribution to the beta

function for g would require a singular term in the OPE of the form Φ�0�(4)(x)Φ�0�(4)(0) ∼

Φ�0�(4) , however there is no such term. This will be an important property in the sequel since

it implies that the logarithmic perturbations essentially do not change the critical exponents.
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Multi-fractal exponents

*  a probe of disorder averaged higher moments;   must be computed in the N-copy theory

Since the additional forms of disorder correspond to the above logarithmic perturbation,

as we argued above, the exponents for the SQHT should be contained in the osp(2|2)−2N

theory. For the 1-copy theory, this is more transparent using the gl(1|1)2 embedding since

Tgl(1|1)2 = Tosp(2|2)−2 [33]. The vector representation of osp(2|2) corresponds to the gl(1|1)2

fields Φ�1,0� and Φ�0,1� with scaling dimension 2∆�1,0� = 1/4, and this determines the density

of states exponent ρ(E) ∼ E
1/7, since 1/7 = ∆/(1−∆) with ∆ = 1/8. The remaining low

dimension fields are Φ�2,1� and Φ�1,2� with ∆ = 5/8,−3/8 respectively. The other fields have

dimensions which differ by an integer from the fields considered thus far. The ∆ = 5/8 field

determines the correlation length exponent for percolation: νperc = (2(1 − 5/8))−1 = 4/3.

(In the osp(2|2)−2 description, the ∆ = 5/8 field is a descendant of the field [±1, 1
2 ]

osp with

∆ = −3/8.) Both of these exponents agree with the exact results in [22]. Note that the

c = 0 minimal model field with ∆ = 1/3, which determines the localization length for self-

avoiding walks, is not contained in the spectrum, which is consistent with observations made

in [23, 55]. Nor are the exponents for the higher n-hull operators (n > 2) in percolation[56].

Our proposal appears to be consistent with other observations made in [55], since, because of

the logarithmic perturbation, the critical point is not strictly speaking a conformal current

algebra, even though it has some of the same exponents. A further check will be given in

the next section based on the multi-fractal exponents.

VIII. MULTI-FRACTAL EXPONENTS.

A. Generalities.

In order to study multi-fractality in the density of states, we add an energy term in the

action corresponding to H → H − E :

SE =

�
d

2
x

2π
iE

�
Ψ−Ψ+ + Ψ−Ψ+

�
(60)

The density of states operator is then

ρ(x) = Ψ−Ψ+ + Ψ−Ψ+ (61)

Multi-fractal properties refer to disorder averages of q-th moments of ρ, ρq, and are simply

related to wave-function ψ multi-fractality since ρ = ψ
†
ψ. Properly normalized quantities
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density of states operator:

q-th moment:  

are

P (q) =

�
d2xρ(x)q

(
�

d2xρ(x))q
(62)

where here ρ represents �ρ� at fixed disorder. At a critical point P (q) scales as

P (q) ∼ L−τq (63)

where L is the system size. The exponents τq are related to the scaling dimensions of

operators as follows:

τq = Γq − qΓ1 + 2(q − 1) (64)

where Γq is the scaling dimension of ρq in the effective disorder averaged theory.

For both the QHT and SQHT, there is a regime at low q where τq is quadratic in q. Since

τ1 = 0 and τ0 = −2, in this parabolic regime τq is characterized by a single parameter α0:

τq = (2− α0)q
2 + α0q − 2 (65)

Since the qΓ1 term is simply a matter of normalization, it is meaningful to define

�Γq ≡ Γq − qΓ1 = (α0 − 2)q(1− q) (66)

For the purpose of comparing with numerical simulations, one can perform the Legendre

transformation[54]

f(α) = αq − τq, α =
dτq

dq
(67)

One finds q = (α− α0)/(2(2− α0)), which leads to

f(α) = −(α− α0)2

4(α0 − 2)
+ 2 (68)

The parameter α0 determines the typical density of states exp(log(ρ)) ∼ L−α0 .

For q greater than some critical value qc, τq is no longer parabolic. This phenomenon of

multi-fractality termination is thought to be distinct from the considerations of this paper,

i.e. it is a separate issue unrelated to the RG flow of the disorder couplings[57–59]. For

the QHT, 2 < qc < 3, whereas for the SQHT, 3 < qc < 4. For the SQHT, the map to

percolation was used to obtain τq for q up to and including q = 3 in [42]. Thus it should

be possible to compute τq in the parabolic regime by studying the N -copy theory with N

the largest integer less than qc, i.e. N = 2 for the QHT and N = 3 for the SQHT. We wish

to emphasize that this new approach gives results that are different from the spectrum of

multi-fractal exponents studied in [13, 58], and also differs from the calculation in [35].
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Multi-fractal exponents

*  a probe of disorder averaged higher moments;   must be computed in the N-copy theory
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⇔   scaling dimension of  

B. QHT

The energy operator corresponds to the gl(1|1) fields

ρ = Φ�1,0� + Φ�0,1� (69)

We thus need the gl(1|1) content of ρq. Using

�h, j� ⊗ (�1, 0� ⊕ �0, 1�) = �h + 1, j� ⊕ �h, j − 1� ⊕ �h, j + 1� ⊕ �h− 1, j� (70)

one sees that the above tensor product involves h+j|new = h+j±1 and h−j|new = h−j±1.

Therefore ρq contains the representations �h, j� with −q ≤ h + j ≤ q, −q ≤ h − j ≤ q.

Examining ∆�h,j� one finds that the most relevant operator in ρq has h = 0, j = q. Setting

N = 2 = k, the field Φ�0,q� has dimension Γq = 2∆�0,q� = q(2− q)/4, which gives

�Γq =
q(1− q)

4
(71)

i.e. α0 = 9/4. This agrees very favorably with the numerical results in [39], α0 = 2.26± .01,

and in [40], α0 = 2.260 ± .003.

C. SQHT

For the SQHT the density operator corresponds to the osp(2|2) field:

ρ = Φosp
[0, 12 ]

(72)

We need the quantum numbers of ρq for q = 2, 3. We have already considered q = 2 in eq.

(41). Since the [8]osp can be viewed as [12 ,
1
2 ]

osp ⊕ [−1
2 ,

1
2 ]

osp, taking one more tensor product

and using the rules in [15] one obtains

[0, 1
2 ]⊗ [0, 1

2 ]⊗ [0, 1
2 ] = [0, 3

2 ]⊕ 3[0, 1
2 ]⊕ 2[12 , 1]⊕ 2[−1

2 , 1]⊕ [1, 1
2 ]⊕ [−1, 1

2 ] (73)

where [b, s] refers to [b, s]osp. Examining the conformal dimensions ∆osp
[b,s], one finds that for

q = 1, 2, 3 the most relevant operator in ρq corresponds to [ q−1
2 , 1

2 ]
osp. Setting N = 3, i.e.

k = −6, one then has Γq = 2∆osp

[ q−1
2 , 12 ]

= q(2− q)/8 which gives

�Γq =
q(1− q)

8
(74)
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where here ρ represents �ρ� at fixed disorder. At a critical point P (q) scales as

P (q) ∼ L−τq (63)

where L is the system size. The exponents τq are related to the scaling dimensions of

operators as follows:

τq = Γq − qΓ1 + 2(q − 1) (64)

where Γq is the scaling dimension of ρq in the effective disorder averaged theory.

For both the QHT and SQHT, there is a regime at low q where τq is quadratic in q. Since

τ1 = 0 and τ0 = −2, in this parabolic regime τq is characterized by a single parameter α0:

τq = (2− α0)q
2 + α0q − 2 (65)

Since the qΓ1 term is simply a matter of normalization, it is meaningful to define

�Γq ≡ Γq − qΓ1 = (α0 − 2)q(1− q) (66)

For the purpose of comparing with numerical simulations, one can perform the Legendre

transformation[54]

f(α) = αq − τq, α =
dτq

dq
(67)

One finds q = (α− α0)/(2(2− α0)), which leads to

f(α) = −(α− α0)2

4(α0 − 2)
+ 2 (68)

The parameter α0 determines the typical density of states exp(log(ρ)) ∼ L−α0 .

For q greater than some critical value qc, τq is no longer parabolic. This phenomenon of

multi-fractality termination is thought to be distinct from the considerations of this paper,

i.e. it is a separate issue unrelated to the RG flow of the disorder couplings[57–59]. For

the QHT, 2 < qc < 3, whereas for the SQHT, 3 < qc < 4. For the SQHT, the map to

percolation was used to obtain τq for q up to and including q = 3 in [42]. Thus it should

be possible to compute τq in the parabolic regime by studying the N -copy theory with N

the largest integer less than qc, i.e. N = 2 for the QHT and N = 3 for the SQHT. We wish

to emphasize that this new approach gives results that are different from the spectrum of

multi-fractal exponents studied in [13, 58], and also differs from the calculation in [35].
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The most revelant operator in          corresponds to  the <0,q>    gl(1|1)  rep.     

B. QHT

The energy operator corresponds to the gl(1|1) fields

ρ = Φ�1,0� + Φ�0,1� (69)

We thus need the gl(1|1) content of ρq
. Using

�h, j� ⊗ (�1, 0� ⊕ �0, 1�) = �h + 1, j� ⊕ �h, j − 1� ⊕ �h, j + 1� ⊕ �h− 1, j� (70)

one sees that the above tensor product involves h+j|new = h+j±1 and h−j|new = h−j±1.

Therefore ρq
contains the representations �h, j� with −q ≤ h + j ≤ q, −q ≤ h − j ≤ q.

Examining ∆�h,j� one finds that the most relevant operator in ρq
has h = 0, j = q. Setting

N = 2 = k, the field Φ�0,q� has dimension Γq = 2∆�0,q� = q(2− q)/4, which gives

�Γq =
q(1− q)

4
(71)

i.e. α0 = 9/4. This agrees very favorably with the numerical results in [39], α0 = 2.26± .01,

and in [40], α0 = 2.260 ± .003.

C. SQHT

For the SQHT the density operator corresponds to the osp(2|2) field:

ρ = Φosp
[0, 12 ]

(72)

We need the quantum numbers of ρq
for q = 2, 3. We have already considered q = 2 in eq.

(41). Since the [8]
osp

can be viewed as [
1
2 ,

1
2 ]

osp ⊕ [−1
2 ,

1
2 ]

osp
, taking one more tensor product

and using the rules in [15] one obtains

[0, 1
2 ]⊗ [0, 1

2 ]⊗ [0, 1
2 ] = [0, 3

2 ]⊕ 3[0, 1
2 ]⊕ 2[

1
2 , 1]⊕ 2[−1

2 , 1]⊕ [1, 1
2 ]⊕ [−1, 1

2 ] (73)

where [b, s] refers to [b, s]osp
. Examining the conformal dimensions ∆

osp
[b,s], one finds that for

q = 1, 2, 3 the most relevant operator in ρq
corresponds to [

q−1
2 , 1

2 ]
osp

. Setting N = 3, i.e.

k = −6, one then has Γq = 2∆
osp

[ q−1
2 , 12 ]

= q(2− q)/8 which gives

�Γq =
q(1− q)

8
(74)
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multi-fractality termination is thought to be distinct from the considerations of this paper,

i.e. it is a separate issue unrelated to the RG flow of the disorder couplings[57–59]. For
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agrees to 1-2% with numerical results of  Klesse&Metzer  (1995);  
Evers, Mildenberger and Mirlin (2001) 
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Localization exponent 

This exponent corresponds to tuning a parameter in the action to critical point,  i.e. 
it’s a quantum critical point.   

In this case one has α0 − 2 = 1/8.

In [30, 41] it was found numerically that α0 − 2 ≈ 1/8 in the parabolic approximation

(within a few percent). However it was also observed that in comparison to the QHT, for

the SQHT there are more marked deviations from parabolicity. If one takes into account

the non-parabolicity and simply defines α0 from the maximum of f(α), then one obtains the

result α0−2 = 0.137±0.003. These observed deviations from a parabolic regime could have a

number of explanations in our model. It could be due to the effects of logarithmic corrections

due to the Φ[8] perturbation. It could also be due to the large number of operators in eq.

(73), where we took only the most relevant.

IX. LOCALIZATION LENGTH EXPONENT.

In simulations of the network models, one needs to tune to a critical point by adjusting

a parameter λ, analogous to tuning to the critical probability pc = 1/2 in 2D classical

percolation. In our description, this should correspond to a term in the action

δSν =

�
d2x

2π
λOν(x) (75)

for some operator Oν . If Oν has scaling dimension Γν , then λ has dimension 2−Γν and the

correlation length diverges as ξc ∼ (λ− λc)
−ν

with ν = 1/(2− Γν).

In contrast to the density of states exponents, we do not have arguments based on quan-

tum numbers to identify the field Oν . In the SQHT we know that Γν = 5/4. In the gl(1|1)2

embedding in the 1-copy theory for the SQHT the field Oν thus corresponds to Φ�2,1�, which

has the explicit form[33]:

Φ�2,1� = µ1/2µ1/2 e
i(2φ1−φ2)/

√
2
+ σ2

1/2σ
1
1/2 e

iφ1/
√

2
(76)

Above, µ1/2 and σ1/2 are twist fields with conformal dimension −1/8 and 3/8 respectively.

Lacking a first-principles identification of Oν for the QHT, we can only give plausible

values based on the spectrum of dimensions in our model. It was understood long ago

that one must consider at least N = 2 copies, since the exponent describes criticality in

the conductance. The latter is related to a product of retarded/advanced 2-point Green

functions, and one needs separate copies for retarded verses advanced. We have already

used the N = 2 copy exponents to explain the multi-fractality in the density of states.
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Critical points of 2d disordered Dirac fermions: the Quantum Hall

Transitions revisited

André LeClair

Newman Laboratory, Cornell University, Ithaca, NY

(Dated: October 2007)

Abstract

We propose a resolution of the renormalization group flow for the disordered Dirac fermion

theories describing the quantum Hall transition (QHT) and spin Quantum Hall transition (SQHT),

which previously revealed no perturbative fixed points at 1-loop and higher. The approach involves

carrying out the flow in 2 stages, the first stage utilizing a new form of super spin-charge separation

to flow to gl(1|1)N and osp(2|2)−2N supercurrent algebra theories, where N is the number of copies.

In the second stage, additional forms of disorder are incorporated as dimension zero logarithmic

operators, and the resulting actions have explicit forms in terms of two scalar fields and a symplectic

fermion. Multi-fractal exponents are computed with the result q(1 − q)/4 and q(1 − q)/8 for the

QHT and SQHT respectively, in agreement with numerical estimates.
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Use  the exact embedding:   gl(1|1)2   ⊂   osp(2|2)-2   

Wednesday, August 10, 2011



By comparing conformal dimensions:      gl(1|1)2   =  percolation     
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I. INTRODUCTION

TEX formulas for keynote

ξc ∼ (E − Ec)
ν

Ψ
α
± = (ψα

±, βα
±), α = 1, .., N

gl(1|1)k

gl(1|1)N

gl(1|1)N ⊕ su(N)0

gl(N |N)

dgA

d�
= −g2

A,
dgB

d�
= +g2

B

�1, 0� ⊗ �0, 1� = �0�(4)

V�0�(4) =





χ1
e
i(φ1−φ2)/

√
k

√
k

χ1χ2/
√

k

χ2
e
−i(φ1−φ2)/

√
k





ψ±, β±

τq = �Γq + 2(q − 1)

ν =
N2

2N − 1

2

This  gives:  
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Since the N=2 theory explains the multi-fractal exponents,  let us double the number
of copies one more time and consider N=4:  ΦN,N−1

ν =
16

7
≈ 2.29

Disordered Dirac fermions in 2 + 1 dimensions have many important applications in con-

densed matter physics. They are theoretically interesting since they can represent new uni-

versality classes of Anderson localization/delocalization transitions. Perhaps the most im-

portant is the Chalker-Coddington network model for the quantum Hall transition (QHT)[1],

which can be mapped onto disordered Dirac fermions[2, 3]. A partial list of other applica-

tions includes to dirty superconductors [4–7], and studies of hopping models on bipartite

lattices [8]. More recent applications are to graphene [9, 10], where the Dirac fermions are

present from the start. The possible universality classes of disordered Dirac fermions were

classified according to their discrete symmetries in [11]. The latter classification contains 13

classes and is thus a minor refinement of Altland-Zirnbauer’s classification which does not

assume the Dirac structure[12].

A number of new theoretical techniques have been developed over the last decade to

study these problems; a partial list includes for instance [13–19]. For the most part, a

proper understanding of the critical points for generic disorder is still lacking. A notable

exception is the spin quantum Hall transition (SQHT). It’s network model[21] can also be

mapped onto disordered Dirac fermions[20]. Remarkably, the equivalent spin chain was

mapped onto 2D classical percolation by Gruzberg, Ludwig and Read[22–24], and this leads

to the exact knowledge of the correlation length exponent νperc = 4/3 and density of states

exponent ρ(E) ∼ E1/7
.

For the QHT, one should also mention the replica sigma model approach of Pruisken[25].

Although it appears to have the right ingredients as outlined in [26], it has proved too difficult

to solve thus far, so it remains unknown whether it really does have the correct critical

point. There is also the later proposal of Zirnbauer[27] which uses supersymmetry. Based

on symmetry and various other requirements the critical point for the QHT was proposed

to be described by a sigma model of WZNW type based on the supergroup PSL(2|2). The

model was further studied in [28]. The main problem with this proposal is that the level

k of the PSL(2|2) WZNW model is an exactly marginal perturbation so that the model

3
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Real experiments:     2.3 ± 0.1 ,    S. Koch et. al.  (1991) 

Numerical simulations:    2.33-2.35  ± 0.03 ,   Huckestein (1995);   D.-H. Lee and Wang (1996) 
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