Supergroups for disordered dirac fermions

Andre LeClair
Cornell University

Newton Institute for Mathematical Sciences
York University December 2007
Outline

• Introduction

• Classification of universality

• Supersymmetric disorder averaging

• $\mathfrak{gl}(1|1)$ supercurrent algebra as a critical point from super spin charge separation

• solution of the the $\mathfrak{gl}(1|1)$ level k model.

• Critical points and logarithmic perturbations

• multi-fractal and localization length exponents

• Conclusions
Outline

• Introduction

• Classification of universality

• Supersymmetric disorder averaging

• $\text{gl}(1|1)$ supercurrent algebra as a critical point from super spin charge separation

• Solution of the $\text{gl}(1|1)$ level k model.

• Critical points and logarithmic perturbations

• Multi-fractal and localization length exponents

• Conclusions

based on 0710.2906[hep-th] and 0710.3778[cond-math] (October)
Motivations from Mathematics and Physics
Motivations from Mathematics and Physics
Motivations from Mathematics and Physics

- **Anderson transitions in 2+1 dimensions**
 - physics of metal–insulator transitions
 - the challenge: computing quenched disorder averages.
 - important physical examples: Quantum Hall Transition, Graphene
 - new universality classes beyond percolation
Supergroups in Mathematical Physics

- Sigma models on Lie supergroups arise in string theory on AdS spaces, e.g. \(\text{psl}(2|2) \) sigma models.

- Spin chains built on supergroups arise in the integrability approach to \(N=4 \) susy Yang-Mills.

- Various problems in statistical mechanics: percolation, self-avoiding walks, polymers,
• Supergroups in Mathematical Physics

• Anderson transitions: supergroups arise in Efetov’s supersymmetric method of computing quenched disorder averages.

• Sigma models on Lie supergroups arise in string theory on AdS spaces, e.g. $\text{psl}(2|2)$ sigma models.

 Berkovits, Vafa, Witten 1999

• Spin chains built on supergroups arise in the integrability approach to $\mathbb{N}=4$ susy Yang-Mills.

 Beisert and Staudacher 2005

• Various problems in statistical mechanics: percolation, self-avoiding walks, polymers,
Anderson localization and the Quantum Hall Transition
Consider electrons moving in a random potential:
Consider electrons moving in a random potential:
Quantum Hall Effect
Quantum Hall Effect

* free electrons in a magnetic field and random impurity potential
* free electrons in a magnetic field and random impurity potential
Quantum Hall Effect

* free electrons in a magnetic field and random impurity potential
* free electrons in a magnetic field and random impurity potential
* free electrons in a magnetic field and random impurity potential

\[\xi_c \sim (E - E_c)\nu, \quad \Delta B \propto T^{1/\nu}, \quad \nu \approx 7/3 \]
Why Dirac fermions? Nearly all interesting cases have 1-st order actions.

Most general Dirac Hamiltonian in 2d:

\[H = \begin{pmatrix}
V_+ + V_- & -i\partial_{\bar{z}} + A_{\bar{z}} \\
-i\partial_z + A_z & V_+ - V_-
\end{pmatrix} \]

V, A = V(x), A(x) = random potentials
Why Dirac fermions? Nearly all interesting cases have 1-st order actions.

Most general Dirac hamiltonian in 2d:

\[
H = \begin{pmatrix}
V_+ + V_- & -i\partial_z + A_z \\
-i\partial_z + A_- & V_+ - V_-
\end{pmatrix}
\]

\(V, A = V(x), A(x) = \) random potentials

Classification according to discrete symmetries:

- Chirality: \(H = -PHP^{-1}, \quad P^2 = 1\)
- Particle-hole: \(H = -CH^TC^{-1}, \quad C^T = \pm C\)
- Time-reversal: \(H = KHK^*K^{-1}, \quad K^T = \pm K\)
Why Dirac fermions? Nearly all interesting cases have 1-st order actions.

Most general Dirac hamiltonian in 2d:

\[
H = \begin{pmatrix}
V_+ + V_- & -i\partial_\bar{z} + A_{\bar{z}} \\
-i\partial_z + A_z & V_+ - V_-
\end{pmatrix}
\]

\(V, A = V(x), A(x) = \text{random potentials}\)

Classification according to discrete symmetries:

- **Chirality:** \(H = -PHP^{-1}, \quad P^2 = 1\)
- **Particle-hole:** \(H = -CH^TC^{-1}, \quad C^T = \pm C\)
- **Time-reversal:** \(H = KH^*K^{-1}, \quad K^T = \pm K\)
Result of the classification:
Result of the classification:

- 13 universality classes
Result of the classification:

- 13 universality classes
- contains: 3 Wigner-Dyson classes
Result of the classification:

- 13 universality classes
- contains: 3 Wigner-Dyson classes
- contains: 10 Altland-Zirnbauer classes
Result of the classification:

- 13 universality classes
- contains: 3 Wigner-Dyson classes
- contains: 10 Altland-Zirnbauer classes
- Chalker-Coddington (1988) network model: Dirac fermion in class GUE
 - a new universality class (not percolation)
Result of the classification:

- 13 universality classes
- contains: 3 Wigner-Dyson classes
- contains: 10 Altland-Zirnbauer classes
- Chalker-Coddington (1988) network model: Dirac fermion in class GUE
 - a new universality class (not percolation)
- Spin quantum Hall transition: class C
 - mapped to percolation by Gruzberg, Ludwig, Read (1999)
 - $\nu = 4/3$
Result of the classification:

- 13 universality classes
- contains: 3 Wigner-Dyson classes
- contains: 10 Altland-Zirnbauer classes
- Chalker-Coddington (1988) network model: Dirac fermion in class GUE
 - a new universality class (not percolation)
- Spin quantum Hall transition: class C
 - mapped to percolation by Gruzberg, Ludwig, Read (1999)
 - $\nu = 4/3$
- chiral Gade-Wegner class (hopping on bipartite lattices)
Result of the classification:

- 13 universality classes
- contains: 3 Wigner-Dyson classes
- contains: 10 Altland-Zirnbauer classes
- Chalker-Coddington (1988) network model: Dirac fermion in class GUE
 - a new universality class (not percolation)
- Spin quantum Hall transition: class C
 - mapped to percolation by Gruzberg, Ludwig, Read (1999)
 - $\nu = 4/3$
- chiral Gade-Wegner class (hopping on bipartite lattices)

* Guruswamy, AL, Ludwig (1999)
Supersymmetric Disorder Averaging

Consider a free hamiltonian in a random potential $V(x)$:

\[H = -\frac{\nabla^2}{2m} + V(x) \]

e.g. Schrodinger for simplicity:

We are interested in disorder averaged Green functions:

\[\langle \psi(x)\psi^\dagger(x') \rangle = \int DVP[V] \langle \psi(x)\psi^\dagger(x') \rangle_V \]

The problem: properly normalize the Green function at fixed V by $Z(V)$:

The trick: represent Z with bosonic ghosts:

\[\frac{1}{Z(V)} = \int D\beta \ e^{-S(\psi\rightarrow\beta,V)} \]

We can now perform the functional integral over the random potential V:

\[\langle \psi(x)\psi^\dagger(y) \rangle = \int D\psi D\beta e^{-S_{\text{eff}}} \psi(x)\psi^\dagger(y) \]

S_{eff} is an interacting quantum field theory of fermions and ghosts.
Where are the critical points?
Where are the critical points?

AL and Bernard 2002
Where are the critical points?

- There are no perturbative fixed points at 1-loop and higher.

- due to marginality of the interactions

AL and Bernard 2002
Where are the critical points?

• There are no perturbative fixed points at 1-loop and higher.

 AL and Bernard 2002

 • due to marginality of the interactions

• Other approaches:

 • Replica sigma models (Pruisken 1984)

 • Supergroup sigma models (Zirnbauer 1999)
Where are the critical points?

- There are no perturbative fixed points at 1-loop and higher.

 AL and Bernard 2002

 - due to marginality of the interactions

- Other approaches:

 - Replica sigma models (Pruisken 1984)

 - Supergroup sigma models (Zirnbauer 1999)

OUR NEW APPROACH: Resolve the RG flow in 2 stages; use super spin charge separation; new results for gl(1|1) current algebra; explicit form of logarithmic operators in terms of symplectic fermions.
Supergroup symmetries in the N-copy theory

\[= \int dx \quad \Psi^* \ H \ \Psi \]

For any realization of the disorder the action has a \(gl(N\mid N) \) symmetry.

The important super subgroup symmetry which commutes with permutations of the copies is:

\[gl(1\mid 1)_N \]
Supergroup symmetries in the N-copy theory

Introduce N-copies of the theory in order to compute multiple moments:

fields: \(\Psi_\pm^\alpha = (\psi_\pm^\alpha, \beta_\pm^\alpha) \), \(\alpha = 1, \ldots, N \)

\[= \int \text{d}x \quad \Psi^\dagger \quad \mathcal{H} \quad \Psi \]

For any realization of the disorder the action has a \(gl(N|N) \) symmetry.

The important super subgroup symmetry which commutes with permutations of the copies is:

\(gl(1|1)_N \)
Supergroup symmetries in the N-copy theory

Introduce N-copies of the theory in order to compute multiple moments:

fields: \[\Psi_{\pm}^\alpha = (\psi_{\pm}^\alpha, \beta_{\pm}^\alpha), \quad \alpha = 1, \ldots, N \]

The action at fixed realization of disorder:

\[
S_{\text{susy}} = \int \frac{d^2x}{2\pi} \left[\bar{\Psi}_-(\partial_z - iA_z(x))\Psi_+ + \bar{\Psi}_-(\partial_z - iA_z(x))\Psi_+ - iV(x) (\bar{\Psi}_-\Psi_+ + \Psi_-\bar{\Psi}_+) \\
- iM(x) (\bar{\Psi}_-\Psi_+ - \Psi_-\bar{\Psi}_+) \right]
\]

\[= \int dx \; \Psi^* \mathcal{H} \Psi \]

For any realization of the disorder the action has a \(gl(N|N) \) symmetry.

The important super subgroup symmetry which commutes with permutations of the copies is:

\[gl(1|1)_N \]
The $gl(1|1)_N$ affine Lie algebra symmetry is generated by the chiral currents:

$$H = \sum_\alpha \psi_+^\alpha \psi_-^\alpha, \quad J = \sum_\alpha \beta_+^\alpha \beta_-^\alpha, \quad S_\pm = \pm \sum_\alpha \psi_+^\alpha \beta_-^\alpha$$

which satisfy the operator product expansion: (k=N = level)

$$H(z)H(0) \sim \frac{k}{z^2}, \quad J(z)J(0) \sim -\frac{k}{z^2}$$

$$H(z)S_\pm(0) \sim J(z)S_\pm(0) \sim \pm \frac{1}{z} S_\pm$$

$$S_+(z)S_-(0) \sim \frac{k}{z^2} + \frac{1}{z} (H - J)$$

Additional symmetries that commute with the above: $su(N)$ at level k=0

$$L_\psi^a = \psi_+^{\alpha_+} t_\alpha^a \psi_-^{\alpha_+}, \quad L_\beta^a = \beta_+^{\alpha_+} t_\alpha^a \beta_-^{\alpha_+}, \quad L^a = L_\psi^a + L_\beta^a$$

Important symmetry: \[gl(1|1)_N \oplus su(N)_0 \]
* First separate the theory into two commuting sets of degrees of freedom. This involves a remarkable identity for the Sugawara stress-tensors:

\[
T_{\text{free}}^{N-\text{copy}} = -\frac{1}{2} \sum_{\alpha=1}^{N} (\psi_{-}^{\alpha} \partial_{z} \psi_{+}^{\alpha} + \beta_{-}^{\alpha} \partial_{z} \beta_{+}^{\alpha}) = T_{\text{gl}(1|1)_{k=N}} + T_{\text{su}(N)_{0}}
\]
Critical points from Super Spin-Charge Separation

Strategy for resolving the renormalization group (RG) flow: Based on the idea that the RG flow to low energies decouples massive degrees of freedom.

* First separate the theory into two commuting sets of degrees of freedom. This involves a remarkable identity for the Sugawara stress-tensors:

\[
T_{\text{free}}^{N\text{-copy}} = -\frac{1}{2} \sum_{\alpha=1}^{N} (\psi_{-}^{\alpha} \partial_{z} \psi_{+}^{\alpha} + \beta_{-}^{\alpha} \partial_{z} \beta_{+}^{\alpha}) = T_{gl(1|1)_{k=N}} + T_{su(N)_{0}}
\]
Critical points from Super Spin-Charge Separation

Strategy for resolving the renormalization group (RG) flow: Based on the idea that the RG flow to low energies decouples massive degrees of freedom.

* First separate the theory into two commuting sets of degrees of freedom. This involves a remarkable identity for the Sugawara stress-tensors:

\[
T_{\text{free}}^{N-\text{copy}} = -\frac{1}{2} \sum_{\alpha=1}^{N} (\psi^\alpha \partial_z \psi^\alpha_+ + \beta^\alpha \partial_z \beta^\alpha_+) = T_{gl(1|1)_{k=N}} + T_{su(N)_0}
\]

* In the first stage of the RG flow, carry out the flow for the couplings in \(S_{\text{eff}} \) corresponding to these two sets of degrees of freedom:

\[
S = S_{\text{eff}} + \int \frac{d^2x}{2\pi} \left(g_A \ J_A \cdot \overline{J}_A + g_B \ J_B \cdot \overline{J}_B \right)
\]

where \(J_A = gl(1|1) \) currents, \(J_B = su(N) \) currents. The r-loop beta functions are:

\[
\frac{dg_A}{dl} = -g_A^2, \quad \frac{dg_B}{dl} = +g_B^2
\]
Critical points from Super Spin-Charge Separation

Strategy for resolving the renormalization group (RG) flow: Based on the idea that the RG flow to low energies decouples massive degrees of freedom.

* First separate the theory into two commuting sets of degrees of freedom. This involves a remarkable identity for the Sugawara stress-tensors:

$$T_{\text{free}}^{N-\text{copy}} = -\frac{1}{2} \sum_{\alpha=1}^{N} (\psi_{-}^{\alpha} \partial_{z} \psi_{+}^{\alpha} + \beta_{-}^{\alpha} \partial_{z} \beta_{+}^{\alpha}) = T_{g\ell(1|1)k=N} + T_{su(N)0}$$

* In the first stage of the RG flow, carry out the flow for the couplings in S_{eff} corresponding to these two sets of degrees of freedom:

$$S = S_{\text{eff}} + \int \frac{d^{2}x}{2\pi} (g_{A} J_{A} \cdot \overline{J}_{A} + g_{B} J_{B} \cdot \overline{J}_{B})$$

where $J_{A} = g\ell(1|1)$ currents, $J_{B} = su(N)$ currents. The r-loop beta functions are:

$$\frac{dg_{A}}{d\ell} = -g_{A}^{2}, \quad \frac{dg_{B}}{d\ell} = +g_{B}^{2}$$

Since g_{A} (g_{B}) is marginally irrelevant (relevant) only the $su(N)$ degrees of freedom are gapped out in the flow. First stage: flow to $g\ell(1|1)_{N}$

Wednesday, August 10, 2011
Critical points from Super Spin-Charge Separation

Strategy for resolving the renormalization group (RG) flow: Based on the idea that the RG flow to low energies decouples massive degrees of freedom.

* First separate the theory into two commuting sets of degrees of freedom. This involves a remarkable identity for the Sugawara stress-tensors:

\[
T_{\text{free}}^{N-\text{copy}} = -\frac{1}{2} \sum_{\alpha=1}^{N} (\psi_{-}^{\alpha} \partial_{z} \psi_{+}^{\alpha} + \beta_{-}^{\alpha} \partial_{z} \beta_{+}^{\alpha}) = T_{gl(1|1)_{k=N}} + T_{su(N)_0}
\]

* In the first stage of the RG flow, carry out the flow for the couplings in \(S_{\text{eff}} \) corresponding to these two sets of degrees of freedom:

\[
S = S_{\text{eff}} + \int \frac{d^2x}{2\pi} \left(g_A J_A \cdot \bar{J}_A + g_B J_B \cdot \bar{J}_B \right)
\]

where \(J_A = gl(1|1) \) currents, \(J_B = su(N) \) currents. The r-loop beta functions are:

\[
\frac{dg_A}{dl} = -g_A^2, \quad \frac{dg_B}{dl} = +g_B^2
\]

Since \(g_A \) (\(g_B \)) is marginally irrelevant (relevant) only the \(su(N) \) degrees of freedom are gapped out in the flow. First stage: flow to \(gl(1|1)_N \)

* Introduce additional forms of disorder as relevant perturbations of \(gl(1|1)_N \)
Solution of the $\text{gl}(1|1)_k$ theory

AL 0710.2906 [hep-th], builds on Schomerus and Saleur 2006
Solution of the \(\text{gl}(1|1)_k \) theory

Free field representation: two scalar field and a symplectic fermion:

Action:

\[
S = \frac{1}{8\pi} \int d^2x \sum_{a,b=1}^{2} \left(\eta_{ab} \partial_{\mu} \phi^a \partial_{\mu} \phi^b + \epsilon_{ab} \partial_{\mu} \chi^a \partial_{\mu} \chi^b \right)
\]

\[
\eta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \epsilon = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
\]

Representation of the current algebra:

\[
H = i\sqrt{k} \partial_z \phi^1, \quad J = i\sqrt{k} \partial_z \phi^2
\]

\[
S_+ = \sqrt{k} \partial_z \chi^1 e^{i(\phi^1 - \phi^2)/\sqrt{k}}, \quad S_- = -\sqrt{k} \partial_z \chi^2 e^{-i(\phi^1 - \phi^2)/\sqrt{k}}
\]
Solution of the $\text{gl}(1|1)_k$ theory

Free field representation:
two scalar field and a symplectic fermion:

Action:
\[
S = \frac{1}{8\pi} \int d^2 x \sum_{a,b=1}^2 \left(\eta_{ab} \partial_{\mu} \phi^a \partial_{\mu} \phi^b + \epsilon_{ab} \partial_{\mu} \chi^a \partial_{\mu} \chi^b \right)
\]

\[
\eta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \epsilon = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
\]

Representation of the current algebra:
\[
H = i\sqrt{k} \partial_z \phi^1, \quad J = i\sqrt{k} \partial_z \phi^2
\]
\[
S_+ = \sqrt{k} \partial_z \chi^1 e^{i(\phi^1-\phi^2)/\sqrt{k}}, \quad S_- = -\sqrt{k} \partial_z \chi^2 e^{-i(\phi^1-\phi^2)/\sqrt{k}}
\]

Twist fields:
\[
\chi^1(e^{2\pi i z}) \mu_\lambda(0) = e^{-2\pi i \lambda} \chi^1(z) \mu_\lambda(0)
\]
\[
\chi^2(e^{2\pi i z}) \mu_\lambda(0) = e^{2\pi i \lambda} \chi^2(z) \mu_\lambda(0)
\]

\[
\Delta(\mu_\lambda) = \frac{\lambda(\lambda - 1)}{2} \equiv \Delta(\chi)
\]
VErTEX OPERATORS: fields transforming in finite dimensional reps of $\mathfrak{gl}(\mathfrak{t}|\mathfrak{t})_k$

The corresponding vertex operator:

$$V_{(h,j)} = (h - j)^{1/4} \begin{pmatrix} -\mu_{\lambda} e^{i(h\phi^1 - j\phi^2)/\sqrt{k}} \\ \sigma_{\lambda}^2 e^{i((h-1)\phi^1 - (j-1)\phi^2)/\sqrt{k}} \end{pmatrix}, \quad \lambda = \frac{h - j}{k}$$

Conformal scaling dimension:

$$\Delta_{(h,j)} = \frac{(h - j)^2}{2k^2} + \frac{(h - j)(h + j - 1)}{2k}$$

Closed operator algebra:

$$-k < h-j < k \quad \text{h,j,k = integers}$$
VERTEX OPERATORS:

Fields transforming in finite dimensional reps of \(gl(1|1)_k \)

2-dimensional reps \(<h,j>:\)

\[
H = \begin{pmatrix} h & 0 \\ 0 & h-1 \end{pmatrix}, \quad J = \begin{pmatrix} j & 0 \\ 0 & j-1 \end{pmatrix}
\]

\(S_+ = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}, \quad S_- = \begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix} \)

\((bc = h-j)\)

The corresponding vertex operator:

\[
V_{<h,j>} = (h-j)^{1/4} \left(-\mu \lambda \ e^{i(h\phi^1-j\phi^2)/\sqrt{k}} \right)
\]

Conformal scaling dimension:

\[
\Delta_{<h,j>} = \frac{(h-j)^2}{2k^2} + \frac{(h-j)(h+j-1)}{2k}
\]

Closed operator algebra:

\(-k < h-j < k\)

\(h,j,k = \) integers
Logarithmic vertex operators for indecomposable representations.

4-dimensional indecomposable reps \(<\mathbf{0}>_4:\) \(\langle 1, 0 \rangle \otimes \langle 0, 1 \rangle = \langle 0 \rangle_{(4)}\)

Corresponding vertex operator \((\Delta=0):\)

\[
V_{\langle 0 \rangle_{(4)}} = \begin{pmatrix}
\chi^1 e^{i(\phi^1 - \phi^2)/\sqrt{k}} \\
\sqrt{k} \\
\chi^2 \chi^2 / \sqrt{k} \\
\chi^2 e^{-i(\phi^1 - \phi^2)/\sqrt{k}}
\end{pmatrix}
\]

Logarithmic property: Virasoro zero mode is not diagonal \((\text{Jordan block form})\)

\[
L_0 = -\frac{1}{k} \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

(similar properties found for \(\text{osp}(2|2)\) by Maassarani and Serban 1997)
Logarithmic vertex operators for indecomposable representations.

4-dimensional indecomposable reps $<0>_{4}$: $\langle 1, 0 \rangle \otimes \langle 0, 1 \rangle = \langle 0 \rangle_{(4)}$

Corresponding vertex operator $(\Delta=0)$:

$$V_{\langle 0 \rangle_{(4)}} = \begin{pmatrix} \chi^1 e^{i(\phi^1-\phi^2)/\sqrt{k}} \\ \sqrt{k} \\ \chi^1 \chi^2 / \sqrt{k} \\ \chi^2 e^{-i(\phi^1-\phi^2)/\sqrt{k}} \end{pmatrix}$$

Logarithmic property: Virasoro zero mode is not diagonal (Jordan block form)

(due to the log pair (1, $\chi^1 \chi^2$))

$$L_0 = -\frac{1}{k} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

(similar properties found for osp(2|2) by Maassarani and Serban 1997)
Logarithmic perturbations

Quantum numbers:

* under the $\text{gl}(1|1) \times \text{su}(N)$ symmetries:

$$\psi_{\pm}, \beta_{\pm} \implies (\langle 1, 0 \rangle \oplus \langle 0, 1 \rangle) \otimes [\text{vec}]$$

* currents = bilinears in these fields. Examining the quantum numbers:

For $N<2$ the most relevant operator corresponds to $\langle 0 \rangle_{(4)}$. Leads to:

$$S = S_{\text{gl}(1|1)_N} + g \int \frac{d^2x}{8\pi} \Phi_{(0)}^{(4)}$$

$$= \int \frac{d^2x}{8\pi} \left(\sum_{a,b=1}^2 \eta_{ab} \partial_\mu \phi^a \partial_\mu \phi^b + \epsilon_{ab} \partial_\mu \chi^a \partial_\mu \chi^b + g \chi^1 \chi^2 \cos \left((\phi^1 - \phi^2)/\sqrt{N} \right) \right)$$
Logarithmic perturbations

Additional disorder as perturbations of the $\text{gl}(1|1)$ cft:

* in the original theory they correspond to left/right current interactions.

* after gapping out the $\text{su}(N)_0$ degrees of freedom, additional disorder corresponds to relevant perturbations consistent with quantum numbers.

Quantum numbers:

* under the $\text{gl}(1|1) \times \text{su}(N)$ symmetries:

\[\psi_\pm, \beta_\pm \quad \leftrightarrow \quad (\langle 1, 0 \rangle \oplus \langle 0, 1 \rangle) \otimes [\text{vec}] \]

* currents= bilinears in these fields. Examining the quantum numbers:

For $N<2$ the most relevant operator corresponds to $\langle 0 \rangle_{(4)}$. Leads to:

\[
S = S_{\text{gl}(1|1) \times \text{su}(N)} + g \int \frac{d^2x}{8\pi} \Phi_{(0)}(4) \\
= \int \frac{d^2x}{8\pi} \left(\sum_{a,b=1}^2 \eta_{ab} \partial_\mu \phi^a \partial_\mu \phi^b + \epsilon_{ab} \partial_\mu \chi^a \partial_\mu \chi^b + g \chi^1 \chi^2 \cos \left((\phi^1 - \phi^2)/\sqrt{N} \right) \right)
\]
* The above action defines a $\mathfrak{gl}(1|1)$ version of sine-Gordon theory.

* The logarithmic perturbations do not drive the theory to a new fixed point:

$$e^{ia(\phi^1 - \phi^2)(z)} e^{ib(\phi^1 - \phi^2)(0)} \sim \text{regular}$$
* The above action defines a $gl(1|1)$ version of sine-Gordon theory.

* The logarithmic perturbations do not drive the theory to a new fixed point:

\[e^{i a(\phi^1 - \phi^2)}(z) \ e^{i b(\phi^1 - \phi^2)}(0) \sim \text{regular} \]

Thus: The critical exponents should be in the $gl(1|1)_N$ conformal field theory.
Multi-fractal exponents

* a probe of disorder averaged higher moments; must be computed in the N-copy theory

density of states operator:

\[\rho(x) = \bar{\Psi} - \Psi + \Psi - \bar{\Psi} \]

q-th moment:

\[P^{(q)} = \frac{\int d^2 x \rho(x)^q}{(\int d^2 x \rho(x))^q} \]

scaling at the critical point:

\[P^{(q)} \sim L^{-\tau_q} \quad (L = \text{size}) \]

Relation to scaling dimension of operators:

\[\tau_q = \hat{\Gamma}_q + 2(q - 1) \]
Multi-fractal exponents

* a probe of disorder averaged higher moments; must be computed in the N-copy theory

density of states operator: \(\rho(x) = \overline{\Psi_- \Psi_+} + \Psi_- \overline{\Psi_+} \)

q-th moment: \(P^{(q)} = \frac{\int d^2 x \rho(x)^q}{(\int d^2 x \rho(x))^q} \)

scaling at the critical point: \(P^{(q)} \sim L^{-\tau_q} \) \((L = \text{size}) \)

Relation to scaling dimension of operators: \(\tau_q = \hat{\Gamma}_q + 2(q - 1) \)

\(\hat{\Gamma}_q \leftrightarrow \text{scaling dimension of } \rho^q \)
We compute $\hat{\Gamma}_q$ in the $\mathbb{N}=2$ copy theory since for $q>q_c$ the multi-fractal spectrum is known to cross over to a non-parabolic spectrum and $2 < q_c < 3$.

The most relevant operator in ρ^q corresponds to the $<o,q>$ $\text{gl}(\mathfrak{h})$ rep.
We compute $\hat{\Gamma}_q$ in the $N=2$ copy theory since for $q > q_c$ the multi-fractal spectrum is known to cross over to a non-parabolic spectrum and $2 < q_c < 3$.

The most revelant operator in ρ^q corresponds to the $<0,q>$ $\text{gl}(1|1)$ rep.

Result:

$$\hat{\Gamma}_q = \frac{q(1-q)}{4}$$
We compute $\widehat{\Gamma}_q$ in the $N=2$ copy theory since for $q>q_c$ the multi-fractal spectrum is known to cross over to a non-parabolic spectrum and $2 < q_c < 3$.

The most relevant operator in ρ^q corresponds to the $<o,q>$ $\text{gl}(1|1)$ rep.

Result:

$$\widehat{\Gamma}_q = \frac{q(1-q)}{4}$$

agrees to 1-2\% with numerical results of Klesse\&Metzer (1995); Evers, Mildenberger and Mirlin (2001)
Localization exponent
Localization exponent

This exponent corresponds to tuning a parameter in the action to critical point, i.e. it’s a quantum critical point.

\[\delta S_\nu = \int \frac{d^2 x}{2\pi} \lambda \mathcal{O}_\nu(x) \]

\[\xi_c \sim (\lambda - \lambda_c)^{-\nu} \quad \nu = 1/(2 - \Gamma_\nu) \]

\[\Gamma_\nu = \text{scaling dimension of } \mathcal{O}_\nu \]
Localization exponent

This exponent corresponds to tuning a parameter in the action to critical point, i.e. it’s a quantum critical point.

\[\delta S_\nu = \int \frac{d^2x}{2\pi} \lambda \mathcal{O}_\nu(x) \]

\[\xi_c \sim (\lambda - \lambda_c)^{-\nu} \quad \nu = 1/(2 - \Gamma_\nu) \]

\[\Gamma_\nu = \text{scaling dimension of} \quad \mathcal{O}_\nu \]

What is the operator \(\mathcal{O}_\nu \)? No simple quantum number arguments to identify it.

Hint from spin quantum Hall: here \(\text{gl}(1|1)_N \) becomes \(\text{osp}(2|2)_{-2N} \)

Use the exact embedding: \(\text{gl}(1|1)_2 \subset \text{osp}(2|2)_{-2} \)
By comparing conformal dimensions: $\text{gl}(1|1)_2 = \text{percolation}$

In the $N=2$ theory, the localization length exponent for percolation is $\langle 2,1 \rangle$ field.

Natural generalization in the $\text{gl}(1|1)_N$ theory is the field $\langle N,N-1 \rangle$.
By comparing conformal dimensions: $\text{gl}(1|1)_2 = \text{percolation}$

In the $N=2$ theory, the localization length exponent for percolation - $<2,1>$ field.

Natural generalization in the $\text{gl}(1|1)_N$ theory is the field - $<N,N-1>$

This gives: $\nu = \frac{N^2}{2N - 1}$
By comparing conformal dimensions: \(\text{gl}(1|1)_2 = \text{percolation} \)

In the N=2 theory, the localization length exponent for percolation - \(<2,1> \) field.

Natural generalization in the \(\text{gl}(1|1)_N \) theory is the field - \(<N,N-1> \)

This gives:

\[
\nu = \frac{N^2}{2N - 1}
\]

Since the N=2 theory explains the multi-fractal exponents, let us double the number of copies one more time and consider N=4:

\[
\nu = \frac{16}{7} \approx 2.29
\]
By comparing conformal dimensions: \(\text{gl}(1|1)_2 = \text{percolation} \)

In the N=2 theory, the localization length exponent for percolation is \(<2,1> \) field.

Natural generalization in the \(\text{gl}(1|1)_N \) theory is the field \(<N,N-1> \)

This gives:

\[
\nu = \frac{N^2}{2N - 1}
\]

Since the N=2 theory explains the multi-fractal exponents, let us double the number of copies one more time and consider N=4:

\[
\nu = \frac{16}{7} \approx 2.29
\]

Real experiments: \(2.3 \pm 0.1 \), S. Koch et. al. (1991)

Numerical simulations: \(2.33-2.35 \pm 0.03 \), Huckestein (1995); D.-H. Lee and Wang (1996)
Conclusions
Conclusions

• a new proposal for the QHT
Conclusions

- a new proposal for the QHT
- relatively simple and predictive
Conclusions

- a new proposal for the QHT
- relatively simple and predictive
- some exponents are correct
Conclusions

- a new proposal for the QHT
 - relatively simple and predictive
 - some exponents are correct
- relies on new results for $\text{gl}(\mathbb{1}\mathbb{1})_k$ current alg.
The End