- Physical meaning of the Wave Function
- Nor malization
- Expectation Values
- Operators
- Stationary States
- Properties
- time-independent Schrödinger equation

Recap:
$\|_{1,3}$ Plausibility Argument leading to Schrödinger's Equation:
Postulates: wave equation $i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V(x, t) \psi(x, t)$
wave function for free $\psi(x, t)=e^{i(k x-\omega t)}$ particle with coast. E, P wave
Time-dependent schrïdinger equation: it $\frac{\partial \psi}{\partial t}=\hat{H} \Psi(x, t)$
\hat{H} : Hamiltonian operator: $\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x, t)$
$\mathrm{II}_{1,4}$ Physical Significance of the Wave Function $\Psi(x, t)$:

$$
\int_{a}^{b}|\Psi|^{2} d x=\int_{a}^{b} \underbrace{\Psi^{*} \Psi d x}_{=P(x, t) d x}=\left\{\begin{array}{l}
\text { probability of finding the } \\
\text { Particle between a and } b \\
\text { at time } t
\end{array}\right\}
$$

$\frac{\text { Measure mint: }}{-|\Psi|^{2} \text { just before }}$ measurement

- $(\underline{\varphi})^{2}$ immediately after measurement has found particle at point "C"
$|\psi|^{2}$

$|\psi|^{2}$

For a proper wave function, $\int_{-\infty}^{\infty}|\Psi(x, t)|^{2} d x=$?

$$
\begin{aligned}
& \text { Probability of } \\
& \text { finding the particle } \\
& \text { somencher mast be }=10
\end{aligned}
$$

- Normalization:
require $\int_{-\infty}^{+\infty}|\Psi(x, t)|^{2} d x=1$
Normalization condition
(Probability) of finding partick somewhere! ! ()
Note: If $\Psi(x, t)$ is solution of S.E. $\Rightarrow \subset \Psi(v, t)$ istool

$$
\Rightarrow \text { if } \int_{-\infty}^{+\infty}|\Psi(x, t)|^{2} d x=a
$$

normalized wave function $=\frac{1}{\sqrt{a}} \Psi(x, t)$
\Rightarrow Note: If a wave function is normalized at time $t=0$ it will stay normalized as time jor on?

Examples: (1) Plane complex wave: free particle with conslantEip

$$
\bar{\Psi}=A e^{i(k x-\omega t)} \Rightarrow P(x, t)=|A|^{2}=\text { cost! }
$$

\Rightarrow Problem: Con not be normalized \Rightarrow not physical!

Examples: (1) Plane complex wave: free particle with constant E,p

$$
\bar{\Psi}=A e^{i(k x-\omega t)} \Rightarrow P(x, t)=|A|^{2}=\text { cons! }
$$

(2) Wave pachet:

(3) Particle in a 1D-box: $v(x)$

(3) Particle in a 1D-box: $v(x) \uparrow$

$$
n=3 \text { state }
$$

$$
|\Psi|^{2}=\Psi^{*} \Psi \rightarrow \text { time independent! } \Rightarrow \text { stationary state }
$$

$\|_{1,5}$ Expectation Values

- start with position:
wave function spread over certain space \rightarrow can not give definite position value for partick
but: specify average measure position of a patich $=$ expectation value of the x-coordinate
$\langle x\rangle=\int_{-\infty}^{+\infty} x P(x, t) d x$ value of probability of observing
that value
\Rightarrow Born's postulate $P(x, t)=\Psi^{x} * \Psi$

$$
\Rightarrow \quad\langle x\rangle=\int_{-\infty}^{+\infty} \Psi^{x}(x, t) \times \Psi(x, t) d x
$$

Note: the expectation value is the average of repeated mearcusments on an ensemble of identically prepared systems!
It is not what you would get if you meas cere the position of one partick over and over gain!

A particle is associated with the following wave function:

$$
\begin{array}{cl}
\Psi(x, t)=\sqrt{\frac{2}{L}} \cos \left(\frac{\pi x}{L}\right) e^{-i \omega t} & \text { for }-\mathrm{L} / 2<\mathrm{x}<\mathrm{L} / 2 \\
\Psi(x, t)=0 & \text { elsewhere }
\end{array}
$$

If the position x of the particle would be measured, the result would be:
A. $x=0$
B. Something between $-\mathrm{L} / 2$ and $+\mathrm{L} / 2$
C. Something between $-\infty$ and $+\infty$
D. Something else

A particle is associated with the following wave function:

$$
\begin{array}{cc}
\Psi(x, t)=\sqrt{\frac{2}{L}} \cos \left(\frac{\pi x}{L}\right) e^{-i \omega t} & \text { for }-\mathrm{L} / 2<\mathrm{x}<\mathrm{L} / 2 \\
\Psi(x, t)=0 & \text { elsewhere }
\end{array}
$$

What is the expectation value of the position $<x>$?
A. $\langle x\rangle=0$
B. $\langle x\rangle=L / 2$
C. $\langle x\rangle=-L / 2$
D. $<x>\approx L / 4$
E. Something else

Symmetry of probability density about $x=0$! -> <x> =0

- Expectation value of tr particle mon enter want: $\langle p\rangle=m\langle v\rangle=m \frac{d\langle x\rangle}{d t}$

$$
\begin{aligned}
& \text { ota-1 }: \frac{d(x)}{d t}=\int_{-\infty}^{+\infty} x \frac{\partial}{\partial t}|\Psi|^{2} d x \\
& \frac{\partial}{\partial t}|\Psi(x, t)|^{2}=\frac{\partial}{\partial t}\left(\Psi^{*} \Psi\right)=\Psi^{*} \frac{\partial \Psi}{\partial t}+\frac{\partial \Psi^{*}}{\partial t} \Psi
\end{aligned}
$$

use Schrodinger's equation:

$$
\frac{\partial \psi}{\partial t}=\frac{i \hbar}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}-\frac{i}{\hbar} \nu \Psi
$$

complex conjugate:

$$
\begin{gathered}
\frac{\partial \Psi^{*}}{\partial t}=\frac{-i \hbar}{2 m} \frac{\partial^{2} \psi^{*}}{\partial x^{2}}+\frac{i}{\hbar} \vee \Psi^{*} \\
\Rightarrow \frac{\partial}{\partial t}|\Psi|^{2}=\frac{i \hbar}{2 m}\left(\Psi^{*} \frac{\partial^{2} \Psi}{\partial x^{2}}-\frac{\partial^{2} \Psi^{*}}{\partial x^{2}} \Psi\right)=\frac{\partial}{\partial x}\left\{\frac{i \hbar}{2 m} \Psi^{*} \frac{\partial \Psi}{\partial x}-\frac{\partial \psi^{*}}{\partial x} \psi\right\}
\end{gathered}
$$

use integration by part:

$$
\begin{aligned}
& \frac{d}{d x}(f g)=f \frac{d g}{\partial x}+\frac{d f}{d x} \cdot g \Rightarrow \int_{a}^{b} f \frac{d g}{d x} d x=-\int_{a}^{b} \frac{d f}{d x} g d x+\left.f g\right|_{a} ^{b}
\end{aligned}
$$

$$
\begin{aligned}
& 2^{\text {nd }} \text { integration } b y \text { parts an } 2^{n d} \text { term: } \quad=0 \text { shat } \psi \text { canoe }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d\langle x\rangle}{d t}=-\frac{i \hbar}{2 m} \int_{-\infty}^{+\infty} 2 \Psi^{*} \frac{\partial \Psi}{\partial x} d x=-\frac{i \hbar}{m} \int_{-\infty}^{+\infty} \Psi^{*} \frac{\partial \psi}{\partial x} d x=\langle v\rangle \\
& \Rightarrow \text { finally: }\langle p\rangle=m\langle v\rangle=-i \hbar \int_{-\infty}^{+\infty}\left(\Psi^{*} \frac{\partial \Psi}{\partial x}\right) d x \quad \begin{array}{l}
\text { expectation } \\
\text { Laluefor } \\
\text { velocity }
\end{array}
\end{aligned}
$$

$$
\Rightarrow\langle p\rangle=\int_{-\infty}^{+\infty} \Psi^{*}\left(\frac{\hbar}{i} \frac{\partial}{\partial x}\right) \Psi d x\left\{\begin{array}{l}
\text { expectation } \\
\text { value of } \\
\text { particle monation }
\end{array}\right.
$$

- operater $\frac{\hbar}{i} \frac{\partial}{\partial x} \longleftrightarrow$ "represent"momentem in quantem mechanics
\Rightarrow For other quantit is:
- Recipe:

1) express quantit) as function of poition and momentem.
2) Seplace " p " by $\frac{\hbar}{i} \partial / \partial x$, "renlac" x bs x

$$
\Rightarrow\langle Q(x, p)\rangle=\int_{-\infty}^{+\infty} \Psi^{\alpha}(x, t) \hat{Q}\left(x, \frac{\hbar}{i} \frac{\partial}{\partial x}\right) \Psi(x, t) d x
$$

Example:

$$
\left\langle x^{2}\right\rangle=\int_{-\infty}^{-\infty} \Psi^{*} x^{2} \Psi d x \Rightarrow \underset{\sigma_{x}^{2} \equiv\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}{\text { varianci }} \begin{aligned}
& \text { ver }
\end{aligned}
$$

$\begin{array}{r}\text { - potential } \\ \text { energ }\end{array}:\langle v\rangle=\int_{-\infty}^{+\infty} \Psi^{*} v(x, t) \Psi d x$

- Kinetic : \ln ergy $: K E=\frac{p^{2}}{2 m} \Rightarrow\langle K E\rangle=\int_{-\infty}^{+\infty} \Psi^{*}\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}\right) \Psi d x$
 $\begin{aligned}=t \mathbb{t}: & \text { Hamiltorion } \\ & \text { operator! }\end{aligned}$

