• Simple harmonic oscillator $V(x) = \frac{1}{2} \omega^2 x^2$
 - End result

• Numerical solution of Schrödinger's Equation

\[E/\hbar \omega \]
Recap:

The simple harmonic oscillator potential $V(x) = \frac{1}{2} cx^2$:

- Potential: $V(x) = \frac{1}{2} c x^2 = \frac{1}{2} m \omega^2 x^2$

- Introduce: $\xi = \sqrt{\frac{m \omega}{\hbar}} x \quad K = \frac{E}{\frac{1}{2} \hbar \omega}$

\Rightarrow S.E.: $\frac{d^2 \psi}{d \xi^2} = (\xi^2 - K) \psi(\xi)$

$\psi(\xi) = \sum_{j=0}^{\infty} a_j \xi^j e^{-\xi^2/2}$ solve S.E.

with $a_{j+2} = \frac{2j+1-K}{(j+2)(j+1)} a_j$

But: need to terminate power series to make $\psi(\xi)$ normalizable!

$\Rightarrow E_n = (n + \frac{1}{2}) \hbar \omega \quad n = 0, 1, 2...$

$\Rightarrow a_{j+2} = \frac{2(j-n)}{(j+2)(j+1)} a_j$
• **Solve in 4 steps:**

1) Quantitative \(\Psi(x) \)

2) Consider large \(x \) i.e large \(\xi \)

3) Solve at all \(x \) i.e all \(\xi \)

4) Make sure \(\Psi(\xi) \) can be normalized

 \[
 \Rightarrow \text{ require } \Psi(\xi) \xrightarrow{\xi \to \pm \infty} 0 \Rightarrow \text{quantized allowed energy } E_n
 \]
End result:

\[\psi_n(x) = H_n(s) e^{-s^2/2} = \sum_{j=0}^{n} a_j s^j e^{-s^2/2} \]

Recursion formula:

\[a_{j+2} = \frac{2(j-n)}{(j+2)(j+1)} a_j \]

\(s^2, 2n+1 \) for even wave functions: \(n = 0, 2, 4, \ldots \)

\(\begin{align*}
\text{start } a_0 \neq 0, a_1 = 0 \\
\Rightarrow H_0(s) = a_0 \\
\Rightarrow \psi_0 = a_0 e^{-s^2/2} \\
\Rightarrow H_2(s) = a_0 (1-2s^2) \\
\Rightarrow \psi_2 = a_0 (1-2s^2) e^{-s^2/2}
\end{align*} \)

\(\Rightarrow \) for odd wave functions: \(n = 1, 3, 5, \ldots \)

\(\begin{align*}
\Rightarrow H_1(s) = a_1 s \\
\Rightarrow \psi_1 = a_1 s e^{-s^2/2} \\
\text{start with } a_1 \neq 0, a_0 = 0
\end{align*} \)
<table>
<thead>
<tr>
<th>(n) = # of nodes</th>
<th>(E_n)</th>
<th>(\Psi_n(S))</th>
<th>Hermite Polynomial (H_n(S))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\frac{1}{2} k_0)</td>
<td>(a_0 e^{-S^2/2})</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>(\frac{3}{2} k_0)</td>
<td>(a_1 S e^{-S^2/2})</td>
<td>2 (S)</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{5}{2} k_0)</td>
<td>(a_2 (1 - 2S^2)e^{-S^2/2})</td>
<td>4 (S^2 - 2)</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{7}{2} k_0)</td>
<td>(a_3 (S - 2S^3)e^{-S^2/2})</td>
<td>(8S^3 - 12S)</td>
</tr>
</tbody>
</table>

\(\Psi_n(S)\) = \(\left(\frac{2n}{\pi k_0}\right)^{1/4} \sqrt{\frac{1}{2^n n!}} H_n(S) e^{-S^2/2}\) \(\omega = \sqrt{\frac{\omega_c}{m}}\) \(n = 0, 1, 2, \ldots\)

\(E_n = (n + \frac{1}{2}) k_0 S\)

\(S = \sqrt{\frac{2n\omega}{k_0}} \times \)
Atomic molecule vibration

Near equilibrium: simple harmonic

reduced mass, μ

$\mu = \frac{m_1 m_2}{m_1 + m_2}$

$E_n = (n + \frac{1}{2}) \hbar \omega$
Example: CO$_2$

Molecular structure of Carbon Dioxide

The asymmetric stretch mode

The bending mode

The symmetric stretch mode

2349 cm$^{-1}$
(001)

$egin{align*}
\text{1388 cm}^\text{1} & \quad (100) \\
\text{667 cm}^\text{1} & \quad (010)
\end{align*}$

\[\{ \hbar \omega \} \]

Symmetric stretch mode Bending mode Asymmetric stretch mode

(000)

The first few vibrational energy levels of the CO$_2$ molecule
Molecule vibration and rotation:
Example: H_2O

- v_1: symmetric stretch
- v_3: asymmetric stretch
- v_2: bend
- x, y, z: librations
Numerical Solution of the time-indep. Schrödinger Equ.

Intro:

→ Timeindep. S.E.: \(\hat{H} \psi = E \psi \)

 Eigenvalue problem: both \(\psi \) and \(E \) are unknown.

→ Solved S.E. in analytical form for \(0 \) square well and for \(\text{S.H. O.} \).

→ But: for most physically realistic potentials the S.E. cannot be solved in analytical form!

→ Solution: use numerical approximation methods on computer!

→ Here: will discuss one of the simple methods
Numerical solution of the time-independent S.E.

Step 1: Fix energy \(E \) at some trial value \(E^t \)

\(\Rightarrow \) Get differential equation

\[
\frac{d^2 \Psi}{dx^2} = -\frac{2m}{\hbar^2} (E^t - V(x)) \Psi(x)
\]

Step 2: Solve diff. eqn. numerically or compute

\(\Rightarrow \Psi(x) \)

Step 3: Check if trial value for particle energy \(E^t \)

is approximate allowed, i.e. if \(\Psi(x) \) is

normalizable
Recall:

- If trial E^t is slightly below allowed eigenstate energy value E_n
 \[V = 0 \] \[(V(x) - E) \text{ is too large outside the well} \]
 \[E^t < E_n \rightarrow |\text{curvature}| \text{ is too large outside well} \]
 \[\Rightarrow \psi(x) \text{ curves away from x-axis without crossing it and goes to } +\infty - \infty \]

Note: sign of $\psi(x)$ changes outside the well when E^t crosses allowed energy E_n

- If trial E^t is slightly above allowed energy E_n
 \[(V(x) - E) \text{ is too small outside well} \]
 \[|\text{curvature}| \text{ is too small outside well} \]
 \[\Rightarrow \psi(x) \text{ crosses x-axis and then goes to } +\infty - \infty \]
\text{= 1)} \quad \text{require } \psi(x) \to 0 \text{ for large and small } x \text{ outside well}

\text{= 2)} \quad \text{use # of nodes inside well and use sign-change outside well of } \psi(x) \text{ to serve (for } E_n, n \text{ 1)}

\underline{\text{Step 4:}} \quad \text{based on results from step 3, generate new } E^* \text{ and go back to step 1 until valid solution } \psi_n, E_n \text{ is found}

\underline{\text{Step 5:}} \quad \text{normalize } \psi_n \text{ is found}
(2) Dimensionless form of the S.E.

\[\frac{d^2 \psi(x)}{dx^2} = \frac{-2m}{\hbar^2} \left[E - V(x) \right] \psi(x) \]

\(\Rightarrow \) both to choose convenient, dimensionless units so that values are of the order of one

\[\Rightarrow \text{get dimensionless form of the S.E.:} \]

\[\frac{d^2 \psi(\tilde{x})}{d\tilde{x}^2} = -\left[\tilde{E} - \tilde{V}(\tilde{x}) \right] \psi(\tilde{x}) \]

with changed variables (dimensionless!)

\[\tilde{x} = \frac{x}{A} \]

units of length for the system

\[\tilde{V} = \frac{V}{\hbar^2}, \quad \tilde{E} = \frac{E}{\hbar^2} \quad \text{energies in some "natural" unit of energy of the system} \]
Note: To get above dimensionless S.E., need
\[B = \frac{L^2}{2 \pi A^2} \]

Example: square well of width \(L \)

1) Choose \(\bar{x} = \frac{x}{L} \)

\[\bar{E} = \frac{E}{B} = \frac{E}{\frac{L^2}{2 \pi L^2}} = \frac{\bar{E}}{\frac{1}{2 \pi}} \]

\[\overline{\bar{E}} = \sqrt{\frac{\bar{E}^2}{2 \pi}} \]

2) Once \(\Psi(\bar{x}) \) and \(\bar{E} \) found \(\rightarrow \) convert back to conventional units

\[\Psi(x), E \]
3. **Approximate difference Equation**

To solve dimensional less S.E. \rightarrow approximate S.E. by a difference equation

- Compute values of $\Psi(\vec{x})$ only at certain, discrete, equally spaced values along the coordinate \vec{x}

\[
\vec{x} \rightarrow \vec{x}_j = j \cdot \Delta \vec{x}
\]

Set of points \vec{x}_j is called a mesh or grid

Grid spacing $\Delta \vec{x}$

Jth mesh point

Needs to be small compared to the length scales in given potential
\(\Psi \) at these points: \(\Psi(x) \rightarrow \Psi(x_j) = \Psi_j \)

potential energy at these points: \(V(x) \rightarrow V(x_j) = V_j \)

to discrete S.E., must find an approximate expression of the second derivative \(\frac{d^2 \Psi}{dx^2} \)
in terms of the \(\Psi_j \):

\[
\Rightarrow \quad \frac{d^2 \Psi}{dx^2} \bigg|_{x_j} \approx \frac{\Psi_{j+1} - 2 \Psi_j + \Psi_{j-1}}{\Delta x^2}
\]

\[
\Rightarrow \quad \Psi_{j+1} = \left\{ 2 - \Delta x^2 \left[E - V_j \right] \right\} \Psi_j - \Psi_{j-1}
\]

difference eqn approximation of S.E.!

\(\Rightarrow \) can calculate \(\Psi_{j+1} \) from \(\Psi_j \) and \(\Psi_{j-1} \)!
Derive approximation for $d^2 \psi / d\bar{x}^2$:

Use Taylor expansion:

$\psi_{j+1} = \psi(x_j + \Delta x) \approx \psi(x_j) + \Delta x \frac{d\psi}{d\bar{x}}|_{x_j} + \frac{\Delta x^2}{2} \frac{d^2\psi}{d\bar{x}^2}|_{x_j}$

$\psi_{j-1} = \psi(x_j - \Delta x) \approx \psi(x_j) - \Delta x \frac{d\psi}{d\bar{x}}|_{x_j} + \frac{\Delta x^2}{2} \frac{d^2\psi}{d\bar{x}^2}|_{x_j}$

Add these two equations:

$= \psi_{j+1} + \psi_{j-1} = 2\psi_j + \Delta x^2 \frac{d^2\psi}{d\bar{x}^2}|_{x_j}$

$= \frac{d^2\psi}{d\bar{x}^2}|_{x_j} \approx \psi_{j+1} - 2\psi_j + \psi_{j-1}$

$= \Delta x^2$

Insert this into the dimensionless S.E.

Gives: $\frac{\psi_{j+1} - 2\psi_j + \psi_{j-1}}{\Delta x^2} \approx - \left[E - V_j \right] \psi_j$
4) **Solving the Discretized S.E.:**

- Pick trial value for particle energy E
 (see discussion above)

- Need two starting values (S.E. is a 2nd order diff. eqn.!
 Ψ_0 and Ψ_1

- From Ψ_0 and Ψ_1, calculate Ψ_2
 From Ψ_1 and Ψ_2, "" Ψ_3
 From Ψ_2 and Ψ_3, "" Ψ_4

 Upto some max. index ∞: $\Psi_\infty = \Psi(E_\infty)$

Out of well
How to find initial starting values Ψ_0 and Ψ_1?

Example 1: Potential with infinite well.

- $V(x)$, ∞ to 0
- x to ∞

Know: $\Psi_0 = \Psi(0) = 0$ at infinite wall

Choose $\Psi_1 \neq 0 \Rightarrow \Psi_1$ determines initial slope of $\Psi(x)$

(later re-adjusted to normalize $\Psi(x)$)

Example 2: Symmetric potentials

- For even functions Ψ:
 - have zero slope at center of well
 - choose $\Psi_0 = \Psi_1 \neq 0$

- For odd functions Ψ:
 - have $\Psi(\text{center}) = 0$ and
 - $\frac{d\Psi}{dx} \bigg|_{\text{center}} \neq 0 \Rightarrow$ choose $\Psi_0 = 0$ and $\Psi_1 \neq 0$
5) Normalizing $\psi(x)$:

\[
\text{require: } \int_{-\infty}^{+\infty} |\psi(x)|^2 dx = 1
\]

=) for discretized values:

\[
\text{require: } \sum_{j=-\infty}^{+\infty} |\psi_j|^2 \Delta x = 1
\]

Note: $\Delta x = \Delta \bar{x} \cdot A$