- Formalism II
- Observables and hermitian operators
- determinate states
- Eigen functions of a hermitian operator

Recap
III ${ }_{1}$ Superposition of stationary, bound states:

- potential well with only bound states: $V=V(x)$
\Rightarrow subset of solutions of time-ders. SE: $\Psi_{n}=\Psi_{n}(x) e^{-i \frac{E_{n}}{\hbar} t}$
stationary states
\Rightarrow solution of eigenvalue equ. $\hat{H} \psi_{n}=E_{n} \psi_{n}$ time-inder. S.E.
\Rightarrow are orthonormal: $\left\langle\psi_{m} \mid \psi_{n}\right\rangle=\int_{-\infty}^{+\infty} \psi_{m}^{*} \psi_{n} d x=\delta_{n m}$
inner product of two functions ψ_{n} and ψ_{m}
\Rightarrow general solution of time der. SE:

$$
\Psi(x, t)=\sum_{n=1}^{\infty} c_{n} \psi_{n}(x) e^{-i \frac{E_{n}}{\hbar} t}
$$

\Rightarrow expansion of Ψ in terms of station an states!

Recap I:
III 2 Hilbert Space:
set $\{f(x)\}$ functions such that $\int_{a}^{b}|f(x)|^{2} d x<\infty$
\Rightarrow Wave functions live in Hilbert space
\Rightarrow inner product exists: $\langle f \mid g\rangle=\int_{-\infty}^{+\infty} f^{x}(x) g(x) d x$

$$
\Rightarrow\langle f \mid g\rangle=\langle g \mid f\rangle^{*} \Rightarrow\langle f \mid f\rangle \text { is real }
$$

\Rightarrow function is normalized, if $\langle f \mid f\rangle=1$
\Rightarrow set of functions is orthonormal, if $\left\langle f_{m} \mid f_{n}\right\rangle=\delta_{n m}$
\Rightarrow set of function is complete, if $f(x)=\sum_{n=1}^{\infty} c_{n} f_{n}(x)$
Projection amplitudes: $C_{n}=\left\langle f_{n} \mid f\right\rangle$

III I_{3} Operators and Observables:
Observable: something one can reasue (E, position, $p \ldots$)

- Expectation value of an observable $Q(x, p)$

$$
\langle Q\rangle=\int_{-\infty}^{+\infty} \Psi^{*} \hat{Q} \Psi d x=\langle\Psi \mid \hat{Q} \Psi\rangle=\langle\Psi| \hat{Q}|\Psi\rangle
$$

- result o of a measurement has to be real!

$$
\begin{aligned}
& \Rightarrow\langle Q\rangle=\langle Q\rangle^{*} \\
& \Rightarrow\langle\Psi \mid \hat{Q} \Psi\rangle=\left\langle\Psi(\hat{Q} \Psi\rangle^{*}=\langle\hat{Q} \Psi \mid \Psi\rangle\right.
\end{aligned}
$$

complex conj. xuerses order
\Rightarrow must be true for ans wave function ψ

$$
\Rightarrow \mid\langle\underline{\Psi}(\hat{Q} \underline{\Psi}\rangle=\langle\hat{Q} \underline{\Psi} \mid \underline{\Psi}\rangle
$$

\Rightarrow for operator representing observables:

$$
\langle f \mid \hat{Q} f\rangle=\langle\hat{Q} f \mid f\rangle \text { for all } f(x)
$$

inhilbetspar
\Rightarrow such operators are called hermitian
Observables are represented by hermitian operators?

Note: If $\langle f \mid \hat{Q} f\rangle=\langle\hat{Q} f / f\rangle$ foal $f(x)$ then $a\left(s_{0}: \mid\langle f \mid \hat{Q} g\rangle=\langle\hat{Q} f \mid g\rangle\right.$ for all $f(x), g(x)$! (see home work...)

Which of these operators is not hermitian?

$$
\begin{aligned}
\cdot\langle\Psi(x \Psi) & =\int_{-\infty}^{+\infty} \Psi x \Psi d x=\int_{-\infty}^{+\infty} x \Psi^{x} \Psi d x \\
& =\int_{-\infty}^{+\infty}(x \Psi)^{x} \Psi d x=\langle x \Psi \mid \Psi\rangle
\end{aligned}
$$

B. $\frac{\hbar}{i} \frac{\partial}{\partial x}$
C. $i x$
D. All of the above
E. None of the above

Note: if $a=$ cont:

- $\frac{\hbar}{i} \frac{\partial}{\partial x}=\hat{p}=\underset{\text { momentum operator }}{ } \quad \begin{aligned}-\partial \text { hermitian }\end{aligned}$
$\cdot\langle\Psi(i \times \Psi\rangle=i\langle\Psi(\times \Psi)$
$=i\langle x \Psi(\Psi\rangle$
$=-\langle i \times \Psi(\Psi\rangle$
$\langle f(a g\rangle=a\langle f(g\rangle$
\Rightarrow not hermitian
$\langle a f \mid g\rangle=a^{*}\langle f \mid g\rangle$ (anti-hermitian)
- general:
indeterminancyin \Leftrightarrow Quarter Theory
- special case:
determinate state
for abervable Q
measurement of observable Q on ensemble of identically prepared systems does not give some result Lack time!
meas unement of observable Q on ensemble of identically prepared syotern dos give same roult (cal lit q) each tim!
\Rightarrow standurt deviation of Q is zero for determinate stats!

$$
\begin{aligned}
& \Rightarrow \sigma_{Q}^{2}=0=\left\langle Q^{2}\right\rangle-\langle Q\rangle^{2}=\left\langle(\hat{Q}-\langle Q\rangle)^{2}\right\rangle \\
&=\left\langle\Psi \mid(\hat{Q}-\langle Q\rangle)^{2} \Psi\right\rangle=\left\langle\Psi \mid(\hat{Q}-q)^{2} \Psi\right\rangle\langle Q\rangle=q \\
&=\langle\Psi((\hat{Q}-q)(\hat{Q}-q) \psi\rangle=\langle(\hat{Q}-q) \Psi((\hat{Q}-q) \psi) \doteq 0
\end{aligned}
$$

$(\hat{Q}-q)$ is a hermitian operator

$$
\begin{aligned}
& \Rightarrow(\hat{Q}-q) \Psi=0\binom{\text { inner product of non -zero }}{\text { function with itself is } \neq 0} \\
& \Rightarrow \| \hat{Q} \frac{\psi}{\frac{\gamma}{\text { eigen function }}=\left\|\frac{k}{T}\right\| \frac{\text { eigenvalue equation }}{\text { forte operator } \hat{Q}}} \\
& \text { eigen function: determinate } s \text { taxes of } Q
\end{aligned}
$$

Determinate stats of an observable Q are eigenfunctions of the her mition operator \widehat{Q} ?
Note: - zero is not an eigenfunction

- zero can be an eigenvalue
- collection of all eigenvalues of an operator is called it spectrum
- sometimes two (or more) linear indep cadent eigen functions share the same eigenvalue q \Rightarrow "degenerate spectrum"

Example:

III $_{4}$ Eigenfunction of a hermitian operator:

$$
\hat{Q} \Psi=q \Psi
$$

Two categoris:
I Spectrum of eigenvalue is dis crete:
example:
\hat{H} forstio
\Rightarrow ligenvalus are separated from one another
\Rightarrow liger function are physicalreatizuble stats
III Spectreunis continuous:
examples: $\quad \Rightarrow$ tums out that ligesfunctions are not
particle;
positonon,$\}$$\Rightarrow$ normalizable "frecparticle": $e^{-i(k x-\omega t)}$ is
positing ${ }^{\hat{x}}, \quad$ eigen function of $\vec{H} \Psi=E \underline{\Psi}$
\Rightarrow Only linear combination of ligan functions may be normalizable in this case \Rightarrow wave packets
[aba: partly discrete, portly continuous C exam: finite square well)

Case I Discrete Spectra:
a) The eighvalus ar real?

Proof: suppose $\hat{Q} \psi=q \underline{\psi}$ and $\langle\Psi(\hat{Q} \Psi\rangle=\langle\hat{Q} \Psi(\Psi\rangle$
hermitian operator

$$
\begin{aligned}
& \Rightarrow\langle\Psi(q \Psi\rangle=\langle q \Psi(\Psi\rangle \\
& \Rightarrow q\left\langle\Psi(\Psi\rangle=q^{*}<\Psi(\Psi\rangle\right. \\
& \Rightarrow q=q^{*} \Rightarrow q \text { is real Q.E.D. }
\end{aligned}
$$

Note: This proof $($ and the one on th next page) only world if the inner product exists! This is th case for discrete spectra, where the eigen functions are nor malizable, but may not be true for the case for continuous spectra!
b) Eigenfunctions belonging to distinct eigenvalus are orthogonal.
start with: $\langle\Psi \mid \hat{Q} \theta\rangle=\langle\hat{Q} \Psi \mid \theta\rangle$: \hat{Q} is

$$
\begin{aligned}
& \begin{array}{l}
\left.\Rightarrow q^{\prime}\langle\psi| q^{\prime} \theta\right)=\langle q \Psi(\theta) \\
\Rightarrow q^{\prime}(\theta)=q^{*}\langle\Psi(\theta) \quad \text { hermition }
\end{array} \\
& \Rightarrow q^{\prime}\left\langle\Psi(\theta\rangle=q^{*}\langle\Psi(\theta\rangle\right. \\
& \Rightarrow q^{\prime}(\psi(\theta)=q\langle\psi(\theta) \text { : eigenvalus } \\
& \text { are ral } \\
& \Rightarrow \text { if } q^{\prime} \neq q \text {, then }\langle\Psi \mid \theta\rangle=0 \text { Q.E.D. } \\
& \Rightarrow \text { orthogonal. }
\end{aligned}
$$

