- Wave Packets and Group Velocity
- λ : Order of Magnitude
- Evidence for wave Behavior of Particles
- The "old Quantum Theory"

Clinton Davisson and Lester Germer
I_{3} Particle Waves Recap:
$\mathrm{I}_{3,1}$ De Broglie Hypothesis:
Particle: Energy $E \quad \longleftrightarrow$ associated wave

$$
\text { Momentum } p<\lambda=\frac{h}{p} \quad \nu=\frac{E}{h}
$$

$I_{3,3}$ Superposition of Particle Waves

$$
\begin{aligned}
& f(x, t)=\operatorname{Re}\{\underbrace{e^{i\left[k_{0} x-w\left(k_{0}\right) t\right]}}_{\substack{\text { infinite plane } \\
\text { wave: }}} \underbrace{\left.\int \phi(s) e^{i s\left(x-\left.\frac{d w}{d k}\right|_{k_{0}} t\right)} d s\right\}}_{\text {envelope function }} \\
& \text { crests move at travels at group velocity } \\
& V_{\text {Phase }}=\frac{\omega}{k}=\frac{c^{2}}{v}: \quad V_{\text {group }}=\frac{d \omega(k)}{d k} \stackrel{!}{=} V_{\text {particle }}
\end{aligned}
$$

Conclusion:

- wave packet associated with "localited"particls:
\Rightarrow position of envelope function (max.
wave amplitude) matters
\Rightarrow Group velocity' matters, not phase veluci't
\Rightarrow localized wave packet \Leftrightarrow momentum of particle is not well. defined (once tain) (small $\left.\Delta x \rightarrow \operatorname{lag} \Delta P_{x}\right)$
\Rightarrow see frupatticle in Schrodinger's Qu

Example: $v_{\text {group }}=v_{\text {particle }}=c / 2 \quad v_{\text {phase }}=c^{2} / v=2 c$

Example: $v_{\text {group }}=v_{\text {particle }}=c / 2 \quad v_{\text {phase }}=c^{2} / v=2 c$

The envelope function of the wave packet associated with a localized particle should be related to...
A. The size of the particle (smaller size -> shorter envelope function)
B. The range of space in which the particle might be found if its position would be measured
C. Something else
$\mathbf{I}_{3,4}$ Group and Phase Velocity for de Broglie's Particle Waves:
phase velocity: $V_{p h}=\frac{\omega}{4}=\lambda \nu=\frac{c^{2}}{v \in \text { speed of }}$
group velocity: $\quad V_{\text {group }}=\frac{d \omega(K)}{d K} \Rightarrow$ need $\omega(K)$

$$
\begin{aligned}
& \omega=2 \pi \nu=2 \pi \frac{E}{h}=\frac{2 \pi}{h} \sqrt{p^{2} c^{2}+m_{0}^{2} c^{4}}=\frac{2 \pi}{h} \sqrt{\frac{h^{2}}{\lambda^{2}} c^{2}+m_{0}^{2} c^{4}} \\
& k=2 \pi / \lambda \\
&=\frac{2 \pi}{h} \sqrt{\frac{h^{2}}{4 \pi^{2}} k^{2} c^{2}+m_{0}^{2} c^{4}}=\omega(k) \\
& \Rightarrow \frac{d \omega}{\frac{d k}{d k}}=\frac{2 \pi}{h} \frac{1}{2} \frac{1}{\sqrt{h^{2} k^{2} c^{2}+m_{0}^{2} c^{4}}} \frac{h^{2}}{4 \pi^{2}} c^{2} 2 h=\frac{1}{E} \frac{h}{2 \pi} c^{2} k \\
&=\frac{1}{E} \frac{h}{2 \pi} c^{2} \frac{2 \pi}{\lambda}=\frac{c^{2}}{E} P=\frac{c^{2} y m_{0} V}{y m_{0} c^{2}}=\underline{V}=\text { partick speed } D \\
&=\text { gram Velocity } D
\end{aligned}
$$

$\Rightarrow \underline{\text { group velocity }}=\begin{array}{r}\text { speed of en velope function } \\ \text { of particle wave packet }\end{array}=\frac{\text { particle speed }}{\text { good! }}$
$\mathrm{I}_{3,5} \underline{\lambda}=\mathrm{h} / \mathrm{p}$: Order of Magnitude Estimate
Or: Why wasn't this noticed before?
thermal neutron (300 K)
elections at 100 eV

$$
\text { neutrons at } 10 \mathrm{MeV}
$$

$$
m=\lg \text { at } 1 \mathrm{~m} / \mathrm{s}
$$

compar tovisibl light
\rightarrow recall 2-slit exp.: maxima for $\sin \theta=\frac{n \lambda}{d}<1$ need $\lambda \simeq d$
\Rightarrow for particle: reed "slit" spacing / diffraction gid on A scale (or leo)
\Rightarrow use crystals!

$$
\begin{aligned}
& \left.\begin{array}{l}
\Rightarrow \lambda=1.5 A^{\circ} \\
\Rightarrow \lambda=1.2 A^{\circ}
\end{array}\right\} \approx \text { atom } \\
& \Rightarrow \lambda=9 \cdot 10^{-15} \mathrm{~m} \text { prize of } \\
& \Rightarrow \lambda=7 \cdot 10^{-71} \mathrm{~m} \\
& \Rightarrow \lambda=400-700 \mathrm{~mm} \\
& =4107 \cdot 10^{-7} 2
\end{aligned}
$$

$\mathrm{I}_{3,6}$ Evidence for de Broglie's Particle Waves:
 Davisson-Germer Experiment (1925): Scattering of low energy electrons by a crystal surface

$\lambda \approx 1 \AA$

G. P. Thompson's Experiment: Diffraction of $10-40 \mathrm{keV}$

 electrons by a thin polycrystalline foil$$
\lambda \approx 0.1 \AA
$$

polycrystalline film \Rightarrow Bragg condition satisfied for any given reflecting plane \Rightarrow concentric circles

Diffraction pattern of X-ray beam passing through Al foil

Diffraction pattern of electron beam passing through Al foil

Electron diffraction by polycrystalline aluminum

Laue pattern of electron diffraction by a single crystal

(Courtesy of Prof. Y. Soejima, Dept. of Physics, Kyushu Univ.)

2-slit Interference of Electrons

(10)

4.JAler 3001 electinis

Wh Alm IUM atorime

idAler 700010 elertron:

Diffraction of Neutrons

$\lambda=$ several \AA A down to $<10^{-14} \mathrm{~m}$

FIGURE 4.7 Diffraction of neutrons by a sodium chloride crystal.
from Krane

(a)

Diffraction of fast neutrons from Al, Cu, and Pb nuclei. [from French, after A Bratenahl, Phys Rev 77, 597 (1950)]

The Spallation Neutron Source (SNS) in Oak Ridge, TN

Why Neutrons?

Neutrons are NEUTRAL particles. They

* are highly penetrating.

0

* can be used as nondestructive probes, and
* can be used to study samples in severe environments

Neutrons have a MAGNETIC moment. They can be used to

- study microscopic magnetic structure,
- study magnetic fluctuations, and
- develop magnetic materials.

Neutrons have SPIN. They can be

* formed into polarized neutron beams,
* used to study nuclear (atomic) orientation, and
*used for coherent and incoherent scattering.

The ENERGIES of thermal neutrons are similar to the energies of elementary excitations in solids. Both
 have similar

- molecular vibrations,
- lattice modes, and
- dynamics of atomie motion.

The WAVELENGTHS of neutrons are similar to atomic spacings. They can determine
*structural sensitivity,

* structural information from 10^{-13} to $10^{-4} \mathrm{~cm}$, and
* crystal structures and atomic spacings.

Neutrons "see" NUCLEI. They

- are sensitive to light atoms,
- can exploit isotopic substitution, and
- can use contrast variation to differentiate complex molecular structures.

Scattering of Alpha Particles

Angular distribution of 40 MeV alpha particles scattered from niobium nuclei.
[from French after G. Igo et al., Phys Rev 101, 1508 (1956)]

Crystal Diffraction of Neutral Helium (1930)

$$
\lambda \approx 1 \AA
$$

Fig. 2-16 (a) Experimental arrangement used by Stern
et al. to investigate crystal diffraction of neutral helium
atoms. (b) Experimental results showing central reflec-
tion peak $\left(\phi=0{ }^{\circ}\right)$, plus first-order diffraction peaks
$\left(\phi=11^{\circ}\right)$. In the experiment, $\theta=18.5^{\circ}$.
from French after Estermann and Stern, Z Phys 61, 95 (1930)

Interference of Molecules

I_{4} The "Old Quantum Theory"
$I_{4,1}$ Key Ideas / Concepts / Postulates:

1) Photons, all partick have both particle-lime and wave-lim properties
2) Precisely - defined trajectoris do not exist at the quantum level
3) The exact behavior of a given partich can not be predicted \rightarrow only it probable behavior \Rightarrow statistical interpretation
4) The probability that asingle patick is observed in a given region is proportional to intensity of its associated wove field: I $\sim|A|^{2}$

$$
\Rightarrow P \propto|A|^{2}
$$

$\Rightarrow x<a l l 2$-slit experiment

wave arglitude on screen:

- one slit open: A.
- bot k slits open: inteferenc

$$
A_{\text {toto }}=2 A_{0} \cos \left(\frac{\pi d}{\lambda} \sin \theta\right)
$$

particle \Rightarrow intensity on screen α probability for wave a particle to arrive at a given region along the screen a statistical distribution, of large number of particles on $t c_{1}$ screen
$\left.I(\theta) \propto P(\theta) \propto\left|A_{t u t a} \|^{2}=4\right| A_{0}\right|^{2} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right)$
$\left.\begin{array}{c}\text { probability }\end{array}\right)$
$\Rightarrow \sqrt{P} \propto|A|$ also called $\frac{\text { probability amplitude }}{\text { (quantum amplitude) }}$
later: wavefunctions $\psi($ complex $) \Rightarrow P \alpha|\psi|^{2}$

2-slit experiment with particles: Assume that only one slit is open, and that the probability of a particle to arrive at a small section Δx of the screen is F. What is the maximum probability of finding a particle in that section Δx of the screen if both slits are open simultaneously?

5) If a particle is con fired into a smull volume, its enegy is fuan tized \Rightarrow "en ergyleull"
6) de Proglie - Einstein postulats:

$$
\lambda=h / p \quad(p=\hbar k) \quad 4=\text { wave }
$$

$$
\nu=E / h \quad(E=t \omega) \omega=\text { angular. }
$$

7) Supuposition prin cipl
