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5. RF Systems and Particle Acceleration
5.2 Accelerating RF Cavities

5.2.3 Standing wave cavities
5.2.4 The pillbox cavity
5.2.5 Higher-Order-Modes
5.2.6 SRF primer
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Connecting to a power source
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External & loaded Q factors
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Coupling parameter β
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Multicell Cavities: Why?
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Multicell Cavities: Why?

Example: 500 GeV Linear Collider

21,024 9-cell cavities: 27.8 km (17.3 miles)

189,216 1-cell cavities: 75.4 km (46.8 miles)

IP

linac 1 linac 2
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Multicell cavities
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Two Coupled Cells: TM010 Modes

2 coupled cells                                       2 TM010 modes 
n coupled cells                                       n TM010 modes 

Cell-to-Cell Coupling
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Multicell cavities
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Accelerating π-mode:

• cell-to-cell phase advance
• bunch takes ½ RF period pass cell

-> energy gain in each cell! 



Simulation Example:
TM010 Eigenmode-Spectrum of a 9-Cell Cavity
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Dispersion Relation

The working 
point. If it is 
too close to 
the neighbor 
point this 
neighbor 
mode can also 
be excited.  To 
avoid this, 
more cell-to-
cell coupling 
is needed: 
broader 
aperture.
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Higher-Order Modes
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• Higher order modes
– Introduction: HOMs
– HOM excitation by a beam
– HOM damping schemes
– HOM damping examples and results



HOM Excitation by a Bunch

time

The bunched beam excites higher-order-modes (HOMs)
= wakefields = electromagnetic fields in the cavity.

bunch

bunch

bunch
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• Bunch traverses a cavity
•  deposits electromagnetic 

energy, which is described as 
wakefields (time domain) or 
higher-order modes (HOMs, 
frequency domain)

• Subsequent bunches are 
affected by these fields and at 
high beam current one must 
consider instabilities

from S. Belomestnykh
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Single Bunch Monopole Losses:
Wake Potential of a Point-Charge

The beam excites higher-order-modes (HOMs) in a cavity:

bunch

• When a charge passes through a cavity, it excites HOMs.

• If it passes exactly an axis, it will only excite monopole modes.

• For a point charge, the HOM excitation depends only on the bunch charge and the cavity 
shape.

• The excited field can be described by the wake potential.

Higher-Order-Modes (HOMs)

transverse kicktransverse kick--fieldsfields

Dipole modes, quadrupole modes,Dipole modes, quadrupole modes,……

Monopole modesMonopole modes

electric field magnetic field

electric field

z

longitudinal electric longitudinal electric 
field on axisfield on axis





Monopole Dipole

Quadrupole

from R. Wanzenberg
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• Higher order modes
– Introduction: HOMs 
– HOM excitation by a beam
– HOM damping schemes
– HOM damping examples and results
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HOM Excitation

The excited HOM power of a single bunch depends on:
 the HOMs of the cavity (i.e. their shunt impedance),
 the bunch charge (PHOM∝qb

2),  
 the bunch length (i.e. the spectrum of a bunch).
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Example: 

σbunch = 0.6 mm  Short bunches excite 
very high frequency modes!
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Single Bunch Monopole Losses: The Bunch
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Longitudinal charge distribution for a 600 µm bunch:
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Single Bunch Monopole Losses:
The Bunch Spectrum
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Spectrum of a 600 µm bunch:
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Lorentz-Forces on test charge:

The integrated field seen by a test particle traveling on the same path at a constant 
distance s behind a point charge q is the longitudinal wake (Green) function w(s).
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Single Bunch Monopole Losses:
Wake Function of a Point Charge after a TESLA Cavity
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Single Bunch Monopole Losses:
Wake Potential of a Point Charge after a TESLA Cavity

The fft of the wake function gives the cavity impedance Z(ω):
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Single Bunch Monopole Losses:
Wake Potential of a Bunch after a TESLA Cavity
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The wake potential W is a convolution of the linear bunch charge density distribution 
q(s) and the wake function w

Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 42



Single Bunch Monopole Losses:
Loss Factor


∞∞∞∞

∞∞∞∞−−−−
==== dssWsqk )()(||

beambunchIQkP |||| =

 This is the total energy lost by a bunch divided by the time separation of 
two consecutive bunches.

 This does not include any interaction between bunches (i.e. resonant mode 
excitation)!!!

Once the longitudinal wake potential is known, the longitudinal loss factor, 
which tells us how much electromagnetic energy a bunch leaves behind in a 
structure can be defined as:

2q
Uk Δ

=

AverageAverage power loss:
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Single Bunch Monopole Losses:
HOM Power Frequency Distribution
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Most of the HOM powerMost of the HOM power
is well below 100 GHz.is well below 100 GHz.

The frequency distribution of the HOM losses is determined by the bunch spectrum 
and the cavity impedance Z(ω): 

[[[[ ]]]]2)(~)()( ωωωωωωωωωωωω qZP ∝∝∝∝
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High current and short bunches
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ERLs:
Storage ring currents and linac bunch length
 Significant HOM power up to 100 GHz!
 Where does the high frequency power go?
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Bunch Trains

Tb

 The HOMs excited by a bunch are decaying due to losses,

 but: still significant field present in the cavity when the next
bunch enters the cavity!

  Resonant excitation of a HOM, if

b
HOM T

Nf 1
≈
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HOM Excitation

The excited HOM power of a bunch train depends on:
 the HOM losses of a single bunch, 

 the beam harmonic frequencies and the HOM 
frequencies (resonant excitation is possible!),

 the bunch charge and the beam current (PHOM∝QI),

 and the external quality factor, Qext of the modes.  
Lower Qext means less energy deposited by the beam:

PHOM ∝ Qext
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Bunch Trains and HOM Power

In average the total HOM losses per cavity are given by the single bunch 
losses (77 pC bunch charge, 2.6 GHz bunch repetition rate, σb= 600 µm):

 W160  A0.2  77pC V/pC4.10|||| ====⋅⋅⋅⋅⋅⋅⋅⋅======== beambunchIQkP

But: If a monopole mode is excited on resonance, the loss for this mode 
can be much higher:

2
beamQI

Q
RP 







====

Example: To stay below 200 W200 W: 
• achieve (R/Q)Q < 5000(R/Q)Q < 5000, 
• or avoid resonant excitation of the mode.
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Bunch Trains and Beam Harmonics

Example: Cornell ERL:
injector the in GHz 3.1⋅⋅⋅⋅==== NfHOM

linac main the in GHz 6.2⋅⋅⋅⋅==== NfHOM
… so most of the monopole modes in the ERL will not be excited resonantly.
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Bunch Trains: HOM Frequencies Spread

Can one design the HOM frequencies such, that non of the modes 
are excited resonantly?

 The higher the frequency, the more sensitive is the frequency of a HOM to 
small perturbations in the cavity shape:

 How large is “const”? Example: 2.4 GHz modes at TTF

Simple approximation: .const
f
f
HOM
HOM ====

ΔΔΔΔ

Mode #

 f
  [H

z]

f = 10 MHz
 const = 0.4 %

i.e. f = 20 MHz at 5.2 GHz
f = 31 MHz at 7.8 GHz
f = 42 MHz at 10.4 GHz

…

16 MHz

2 MHz
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Bunch Trains:
A Simple Model: 10000 Monopoles with random f’s
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Bunch Trains:
A Simple Model: 10000 Monopoles with random f’s
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Bunch Trains:
A Simple Model: 10000 Monopoles with random f’s
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Example: all HOMs have Q = 1000,
one set of frequencies
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A Simple Model: 1000 Monopoles with random f’s
Total HOM Monopole Power for random Sets of Frequencies
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All HOMs have Q = 100

All HOMs have Q = 1000

All HOMs have Q = 104
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Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 55

Higher-Order-Modes (HOMs)

Parasitic modes excited by the accelerated beam may lead to: 

 degradation of the beam quality (transverse emittance
growth due to dipole modes, BBU, energy spread),

 additional cryo-losses (wall losses, heating of
cables and feedthroughs), mostly due to monopole modes.

 Requirements on the Requirements on the external quality factor,external quality factor,
QQext ext of the modes.of the modes.

Without additional damping the HOMs can haveWithout additional damping the HOMs can have
very high quality factors (Q>10very high quality factors (Q>101010)!   )!   
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