Lecture 20

5. RF Systems and Particle Acceleration

5.2 Accelerating RF Cavities
5.2.3 Standing wave cavities
5.2.4 The pillbox cavity
5.2.5 Higher-Order-Modes
5.2.6 SRF primer
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Parallel circuit model

A resonant cavity can be modeled as a series of parallel circuits representing the

cavity eigenmodes: 5
. \%
dissipated power P =-C -
“ 2R
shunt impedance R, = 2R Ve L Z.R_T C
R C -
i =w)yCR=——=R |—
quality factor Qy = ay ool \/:
impedance Z-= R - R
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Connecting to a power source

= Consider a cavity connected to an RF power source

waveguide circulator waveguide
mn =l []__input coupler
[} ] ]

superconducting cavity

S AN NN NN S

RF power source

RF load

= The input coupler can be modeled as an ideal transformer:

I, Zy L R —C
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External & loaded Q factors

= If RF is turned off, stored energy will be dissipated now not only in R, but also in
Z, 2, thus

Ptot =P0+Pext

2 2
. ex
/Q QO 220’712 R/Q'Qext

= Where we have defined an external quality factor associated with an input coupler.
Such Q factors can be identified with all external ports on the cavity: input coupler,
RF probe, HOM couplers, beam pipes, etc.

= Then the total power loss can be associated with the loaded Q factor, which is

1 1 1 1
+

=—+
QL QO Qextl Qext2

+...
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Coupling parameter g

= For each port a coupling parameter can be defined as

%
p= Qext

50 1 _1+p
Or

= |t tells us how strongly the couplers interact with the cavity. Large gimplies that
the power leaking out of the coupler is large compared to the power dissipated in
the cavity walls:

. v
e R/ QO R/ 00

= And the total power from an RF power source is

Fot =Pf0rw =(/5+1)P0

P = PR
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Multicell Cavities: Why?
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higher fill-factor: fewer

* input couplers
F =

* waveguide elements

total length * RF control systems
= lower costs

= better beam

passive
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Multicell Cavities: Why?

Example: 500 GeV Linear Collider

linac 1

*‘I‘
Y
49&@,

189,216 1-cell cavities: 75.4 km (46.8 miles)
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Multicell cavities

= Several cells can be connected together to form a multicell cavity.

= Coupling of TM,,, modes of the individual cells via the iris (primarily electric field) causes them to split
into a passhand of closely spaced modes equal in number to the number of cells.
coupling

iris hole ¢

L (& L C L C

N VYN o o

z KQI;]I Re rIl ] :C‘ rIZ_] T r® L) J
3 < | 12 < {12 ; D—lﬂ <
&«:’F | = ——

cellZn-1 cell2n ' cell Fn+l 0 R, R,

= The width of the passband is determined by the strength of the cell-to-cell coupling k and the frequency
of the n-th mode can be calculated from the dispersion formula

2
[?J =1+ Zk[l - cos(’;\],rﬂ O-mi balfcells -, -
0 \ e oy

where Nis the number of cells, n = 7 ... Nis the mode number.

z cavity axis cavity axis
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Two Coupled Cells: TM010 Modes
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Multicell cavities

‘ + model: mods #1 ‘ + model: mode £2
05 O ACBE4: mode #1 05 L G ACB4: mode #2
= T N x = Figure shows an example of calculated
0 ] : . . .
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-05 -05 Kﬁ—ﬂ . .
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0 0
= A longer cavity with more cells has more
-0.5 -05 .
1234567859 123467853 modes in the same frequency range, hence
. [} mmas . [} mtmam the reduction in frequency difference between
= | A /1 - . ™\ adjacent modes. The number of cells is
0 o N usually a result of the accelerating structure
05t L osl 1 1ML L : optimization.
cell # cell #
os [ moes et o [o =] = The accelerating mode for SC cavities is
= R IN SINEARA N usually the s-mode, which has the highest
’ L/ INVAR L S EEWIR TS frequency for electrically coupled structures.
-0.5 -05
T L o ‘ws” " ®® ' The same considerations are true for HOMs.
o Lo Reat et 5100
= A ﬂzmgo 3
0 S
/ = 1280 [ model |
O ACs4
05 1.2 3 4 5 6 7 8 9 1270 12 3 4 5 6 7 8 9
cell # TMO10 mode #
Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 11

- cell-to-cell phase advance
+ bunch takes 2 RF period pass cell
-> energy gain in each cell!
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Simulation Example:
TMO010 Eigenmode-Spectrum of a 9-Cell Cavity
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Dispersion Relation
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Mode Beating during Cavity Filling

+ Modeling of the transient state (mode beating)
Example: 7-cells, k_.=1.85%, Q;=3.4 106

3.0

—cell-1 — cell-2 cell-3

| |— cell-4 — cell-5 — cell-6
—cell-7 — Mean

N
(S

1.0 S

Voltages in cells farbitrary units]

0.0 \\\\\ L
0.00 1.00 2.00
tfus]
Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 15

5.2.4 The pillbox cavity
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5.2.5 Higher-Order-Modes

 Higher order modes
— Introduction: HOMs
— HOM excitation by a beam
— HOM damping schemes
— HOM damping examples and results
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time

The bunched beam excites higher-order-modes (HOMS)
= wakefields = electromagnetic fields in the cavity.
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Beam-Cavity Interaction

ERL 2-cell injector cavity Z =262.4mm

« Bunch traverses a cavity Bunche. 0.60mm RaZie103.10276.20

« = deposits electromagnetic
energy, which is described as
wakefields (time domain) or
higher-order modes (HOMs,
frequency domain)

« Subsequent bunches are
affected by these fields and at

high beam current one must
consider instabilities M

SN SLAC Stanford

NOVO:Tue Jul 5 23:46:08 2005

from S. Belomestnykh

Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 28




Single Bunch Monopole Losses:
Wake Potential of a Point-Charge

The beam excites higher-order-modes (HOMs) in a cavity:

* When a charge passes through a cavity, it excites HOMs.
* If it passes exactly an axis, it will only excite monopole modes.

* For a point charge, the HOM excitation depends only on the bunch charge and the cavity
shape.

» The excited field can be described by the wake potential.

Higher-Order-Modes (HOMSs)

Monopole modes . electric field

longitudinal electric
field on axis

Dipole modes, quadrupole modes,. ..

electric field magnetic field
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Monopole, Dipole and Quadrupole Modes...

Figure 5: One mid cell of a TESLA cavity. The electric field of the 1.3 GHz
accelerating 7 -mode is shown. The left graph shows the electric field in a plane Figure 6: One mid-cell of a TESLA cavity. The electric field of the 1.79 Gz

perpendicular to the cavity axis. 7 mode of the first dipole passhand is shown. The left graph shows the electric

Quadrupole

field in a plane perpendicular to the cavity axis.

Hroz) costmal e,

t:-tj.
|
;_-M

sinfm o] eg

coslim @) €. )

) osin{m o)

w
3

|

-
-
o]

ey
[
M

cos(m @) eg

+ BYr sy sinimd) e. ) .

Figure 7: One mid-cell of a TESLA cavity. The electric ield of the 2.32 G(iHz

7-mode of the first quadrupole passband is shown. The left graph shows 1hfrom anzen erg

electric field in a plane perpendicular to the cavity axis.

Methods of HOM Calculations: Frequency Domain

Complex eigenvalue solution (becoming available, SLAC codes, ANSYS beta, HFSS)
gives real and imaginary parts of impedance directly, hence R and Q.

E Field[¥/m]

1. BR0BE+0ABS
6. 4938e-001
4, 2170=-081
2, 7384e-0B1
1. 7783e-081
1,1548e-031
7. 4989&-002
Y4, 8697e-002
3,
2,
1.
&,
5
3.

1623e-082
B535e-202
3335e-8082
E596&-003
E234%e-0@3
E517e-0@3
2, 3714%e-083
1.5399e-8083
1, 0000e-083

HFSS 3D complex Eigenvalue solution, 5-cell cavity with enlarged beam-pipes.
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Time-Domain Method (I)

Time domain (FFT) method (developed at SLAC, widely used, ABCI, MAFIA etc.)

= \j ’f |
_ = = Y i f
= = i AN H |
R
; 0
3D MAFIA model of PEP-IT cavity. Short-, medium- ar:gwlgng-mnge wakes™.

*(2000) Physical Review Special Topics - Accelerators and Beams, Volume 3, 102001
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0.3 o 1.5 20 2.5 0.5 1.0 1.5 2.0 s
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Calculation vs bead-pull measurements. Measured vs calculated HOM spectrum.

Method uses open boundaries on ports. FFT of long-range wake gives broad-band

impedance spectrum in one run. Works best for strong coupling (g > 1). Frequency
resolution set by wake length, max frequency set by mesh size (typ. ~10 6Hz).
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HOMs

 Higher order modes
— Introduction: HOMs
— HOM excitation by a beam
— HOM damping schemes
— HOM damping examples and results
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HOM Excitation

The excited HOM power of a single bunch depends on:
» the HOMs of the cavity (i.e. their shunt impedance),
> the bunch charge (Py0y%<q,2)s

» the bunch length (i.e. the spectrum of a bunch).

\\

20 40 60 80 100
HOM frequency [GHZz]

10 | ; ;
o]
T \ Example:
g 8 ]
.§ \ Opynch = 0.6 mm = Short bunches excite
@ 6 \ very high frequency modes!
k<]
o}
z 4 \
)
o
= \
o 2 N
I \
©
B
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Single Bunch Monopole Losses: The Bunch

Longitudinal charge distribution for a 600 um bunch:
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Single Bunch Monopole Losses:
The Bunch Spectrum

Spectrum of a 600 um bunch:

1
0.8 _
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Beam-cavity interaction: Wave Function

I

Ny e
Gz *— =
Al i

-
[—

Figure 3: A point charge ¢, traversing a cavity with an ollset v Iollowed by a
test charge ¢ with offset r; .

Lorentz-Forces on test charge: I = % — @ (E +ce, x B).
i

The integrated field seen by a test particle traveling on the same path at a constant
distance s behind a point charge g is the longitudinal wake (Green) function w(s).
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Single Bunch Monopole Losses:
Wake Function of a Point Charge after a TESLA Cavity
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Single Bunch Monopole Losses:
Wake Potential of a Point Charge after a TESLA Cavity

The fft of the wake function gives the cavity impedance Z( w):
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Single Bunch Monopole Losses:
Wake Potential of a Bunch after a TESLA Cavity

x1013

W(s) = jq(s')w(s —sds'

wake potential [V/C]
o

2F .
B ——
25t bunch ]
_3 1 L 1 L 1 L 1 L 1
-5 -4 -3 -2 -1 0 1 2 3 4 5
z [mm]

The wake potential W is a convolution of the linear bunch charge density distribution
g(s) and the wake function w
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$esry  Single Bunch Monopole Losses:
&) LossF
~= Loss Factor

Once the longitudinal wake potential is known, the longitudinal loss factor,
which tells us how much electromagnetic energy a bunch leaves behind in a
structure can be defined as:

AU

k = s k" = Ig(S)W(S)dS

Average power loss:

PII = kllQbunchI beam

> This is the total energy lost by a bunch divided by the time separation of
two consecutive bunches.

> This does not include any interaction between bunches (i.e. resonant mode
excitation)!!!
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Single Bunch Monopole Losses:
HOM Power Frequency Distribution

o

) 5

Y
4'050 S

The frequency distribution of the HOM losses is determined by the bunch spectrum
and the cavity impedance Z(w):

P(w) x Z(0)[§(@)F

integrated power up to frequency f

Most of the HOM power |7
is well below 100 GHz.

(9 100 f [GHz] 200 300
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(&) High current and short bunches

350

300
= 250 ERLs:
% 200 Storage ring currents and linac bunch length
é = Significant HOM power up to 100 GHz!
3 450 = Where does the high frequency power go?
&
(0]
< 100

50
% 0.5 1 5 25
1/(bunch length) [m'] x10 *
45
Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 45

Average HOM Power Examples

103_ T B O B R i R A T LT
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&) Bunch Trains

«O a a a € a—
|

Tb
> The HOMs excited by a bunch are decaying due to losses,

> but: still significant field present in the cavity when the next
bunch enters the cavity!

> = Resonant excitation of a HOM, if

1

~N—
fHOM Tb
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HOM Excitation

The excited HOM power of a bunch train depends on:
» the HOM losses of a single bunch,

» the beam harmonic frequencies and the HOM
frequencies (resonant excitation is possible!),

> the bunch charge and the beam current (Py,,*<QI),

» and the external quality factor, Q
Lower Q

o Of the modes.
means less energy deposited by the beam:

PHOM o Qext

ext
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Bunch Trains and HOM Power

In average the total HOM losses per cavity are given by the single bunch
losses (77 pC bunch charge, 2.6 GHz bunch repetition rate, o, = 600 um):

P|| = kIIQbunctheam = 10.4V/pC . 77pC -02A =160 W

But: If a monopole mode is excited on resonance, the loss for this mode
can be much higher:

R )
P=|—|0I
(Q]Q beam

Example: To stay below 200 W:

e achieve (R/Q)Q < 5000,
e or avoid resonant excitation of the mode.
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Bunch Trains and Beam Harmonics

Example: Cornell ERL:

faom = N -1.3 GHz in the injector
faom = N - 2.6 GHz in the main linac

... so most of the monopole modes in the ERL will not be excited resonantly.

modes in a
15k 9-cell cavity ]

_ ./ \
beam harmonics

05F -— )

| uptoxx GHz

00 2000 3000 4000 5000 6000 7000
f [MHZ]
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Can one design the HOM frequencies such, that non of the modes
are excited resonantly?

> The higher the frequency, the more sensitive is the frequency of a HOM to
small perturbations in the cavity shape:

Bunch Trains: HOM Frequencies Spread

. . A
Simple approximation: Mrom = const.
. HOM
> How large is “const”? Example: 2.4 GHz modes at TTF
16 MHz .
s aeor | @ . . Nuuu]e; = | Gf: ]0 MHZ
’ " . N ; N N = const =04 %
N " +
E et | ie.o,=20 MHz at 5.2 GHz
© il . ] 6,= 31 MHz at 7.8 GHz
. = 2 LT | 6,= 42 MHz at 10.4 GHz
2 MHZ )EO z 4 & g 10
Mode #
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Bunch Trains:
A Simple Model: 10000 Monopoles with random f’s
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Bunch Trains:
A Simple Model: 10000 Monopoles with random f’s
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=, 10 = ra 3 j i i !
31073 . T 1
X~ 8 s
5 .
E 10° o T R A .
& :
3 ! ! ! ! !
~10° \ \ \ \ \
0 10 20 30 40 50 60
frequency [GHz]
150

=S calculated single bunch losses
© 00 e ,,,,,,,,,,,,, -
o I I I I
o I
3 !
) ‘ ‘ ‘ ‘ :
B 50 e R AR, P .
5 ‘ ‘ ‘ ‘
Qo !
£ :

0 |

0 10 20 30 40 50 60

frequency [GHz]

Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 53

Bunch Trains:
A Simple Model: 10000 Monopoles with random f’s

8 r r : r
-1 Example: all HOMs have Q = 1000, ]
one set of frequencies
6 - -
=° '
o 4r 1
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frequency [GHZz]
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A Simple Model: 1000 Monopoles with random f’s
Total HOM Monopole Power for random Sets of Frequencies

O
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Higher-Order-Modes (HOMs)

Parasitic modes excited by the accelerated beam may lead to:

» degradation of the beam quality (transverse emittance
growth due to dipole modes, BBU, energy spread),

» additional cryo-losses (wall losses, heating of
cables and feedthroughs), mostly due to monopole modes.

=> Requirements on the external quality factor,
_0, . of the modes.

Without additional damping the HOMs can have
very high quality factors (0>10"9)!
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