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5. RF Systems and Particle Acceleration
5.2 Accelerating RF Cavities

5.2.5 Higher-Order-Modes
5.2.6 SRF primer

5.3 RF power sources



• Higher order modes
– Introduction: HOMs 
– HOM excitation by a beam
– HOM damping schemes
– HOM damping examples and results
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Solution (for SC Cavities): HOM Couplers and Absorbers

The parasitic e-m fields can be kept below the threshold by means 
of HOM couplers and HOM absorbers, usually attached to the 

beam tubes of a s.c. cavity.

HOM coupler

HOM couplerHOM absorber
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Higher-Order-Mode Couplers and Absorbers

f/GHz1 10 100

trapped and 
quasi trapped modes

propagating modes

HOM couplers HOM beam-pipe absorber

to room temperature
load

facc

absorber between cavities
at temperature level with good

cryogenic-efficiency
The frequency where the HOMs start to propagate depends on the beam tube 

diameter: ωc ∝ 1/diameter!

waveguide couplers
antenna couplers
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Several approaches are used:

• Loop couplers (several per cavity 
for different modes/orientations)

• Waveguide dampers

• Beam pipe absorbers (ferrite or 
ceramic)

JLab proposalBNL ERL cryomodule B-cell beam line components (TLS)

TESLA cavity loop coupler
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Broadband Beam Pipe RF Absorber

propagating modes

• High frequency modes   propagate out 
the beam pipe.

• RF absorbing material can damp these 
modes.

• Dissipated power will be intercepted by 
cooling (water, He, LN2).

• Candidate absorber materials:
 ferrites (used in CESR HOM load)
 Zr10CB5 CERADYNE (used for 

CEBAF HOM load)
 Mo in AL2O3 
 …

facc is below the cut-
off frequency of the 

tube
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Broadband RF Absorber

Fundamental mode: f=1.300 GHz 
ferrite absorber

16.5 cm

Example: dipole mode: f=3.9 GHz

•Low field at absorber 
 no significant damping of the fundamental mode 

but:
• Propagating modes have higher fields at the absorber

 damping and power extraction!
ferrite absorber

Q < 104

Q > 1010
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Higher-Order-Mode Couplers

Coaxial Coupler Waveguide Coupler

Rejection filter suppresses 
coupling to the accelerating 
mode. 

Waveguide cutoff suppresses 
coupling to the accelerating 
mode. 

HOM out HOM out
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TTF HOM Loop Coupler (1)

HOM coupler at each side 
of the cavity close to end cell 

to damp HOMs

Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 9

HOM Loop-Couplers

Coupler model: superconducting
pick-up antenna
superconducting

pick-up loop

capacitive
coupling

output to
room temp.

load

capacitor of the
1.3 GHz notch 

filter

 Important to reduce Q of non-propagating dipole modes.
 Can only handle a few 10 W. 
 Will work up to a few GHz but not above.
 Cooling / heating from fundamental mode issue in cw cavity 

operation.
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from Bob Rimmer
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from Bob Rimmer
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• Higher order modes
– Introduction: HOMs 
– HOM excitation by a beam
– HOM damping schemes
– HOM damping examples and results
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Example 1: CESR HOM Ferrite Absorber (1)

 Flute beam pipe  guide out the first two deflecting modes.

 Total HOM power: several kW!

 Qext < 103
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CESR HOM Ferrite Absorber (2)

ferrite

water 
cooling
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CESR HOM Ferrite Absorber (3)

 Use a single cell (no reflection by irises between cells) 
 Open beam tubes so that all modes propagate out the beam tubes!

 Use material with very high RF losses.
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Example 2: The Cornell ERL Injector

beam

4.34 m

ferrite #1
ferrite #4

ferrite #5ferrite #3
ferrite #2

ferrite #6

HOM damping concept: Make all TM monopole and all dipole modes propagating by 
increasing the beam tube diameter (as in CESR).

Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 17



Flange to 
Cavity

Flange to 
Cavity

RF 
Absorbing 

Tiles

Cooling 
Channel 
(GHe)Shielded 

Bellow

Power per load 26 W (200 W max)

HOM frequencies 1.4 – 100 GHz
Operating temp. 80 K
Coolant He Gas
RF absorbing tiles TT2, Co2Z, Ceralloy
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accelerating mode, almost 
undamped, as it should be

strongly damped HOMs
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Example 3: ILC Cavity with HOM Loop Couplers 

1.E+03

1.E+04

1.E+05

1.E+06

1 2 3 4 5 6 7 8 9

#D41 #S32
#S29 not measured #S30
#D39 #D40
#S28 #D42

TM011 mode #

Q

measured by G. Kreps, DESY

TTF module #3
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TTF HOM Coupler:
Measured Damping of Dipole Modes

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1 2 3 4 5 6 7 8 9

#D41 #S32 #S29 #S30
#D39 #D40 #S28 #D42

TE111 mode #

Q

1b 2b 3b 4b 5b 6b 7b 8b 9b

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

Q

1 2 3 4 5 6 7 8 91b 2b 3b 4b 5b 6b 7b 8b 9b
TM110 mode # measured by G. Kreps, DESY

low R/Q

high R/Q modes

high R/Q modes

low R/Q
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• Why superconducting cavities?
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Power dissipated into the wall:

Example:Example:
• Accelerating voltage: let’s take only 1 MV
• Constant R/Q (depends on cell shape): 1000 Ω
• Geometry constant: 270 Ω
• Surface resistance: Rs,copper = 10 mΩ, Rs,Nb= 10 nΩ

 Pdiss,copper = 37 kW            Pdiss,Nb = 37 mW 
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Minimizing Losses 

S
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Depend only on cavity geometry.Depend only on cavity geometry.
 Maximize for copper cavities.Maximize for copper cavities.

Minimize surface resistance!Minimize surface resistance!
 Superconducting cavities.Superconducting cavities.

mmΩΩ (copper) (copper)  nnΩΩ

Less important for SRF cavities!
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RF Cavities for Linacs: NC vs SC

• TESLA
• superconducting cavity
• niobium 
• 1.3 GHz
• 2 K (LHe)

• one cell from NLC
• normal conducting cavity
• copper
• 11.4 GHz
• water cooled

Fundamental differences due to difference in wall losses.
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Superconducting Cavities: Advantages 

 Can operate at a higher voltage in cw operation or long 
pulse operation because of low losses.

 Power consumption is less.  Operating cost savings, better 
conversion of ac power to beam power.

 Power dissipation is not the primary concern!  Can tailor 
design to a given accelerator application.
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Superconducting Cavities: Advantages (cont.) 

 Freedom to adapt design better to the accelerator 
requirements allows, for example, the beam-tube  
and the cell iris size to be increased:

• Reduces the interaction of the beam with the cavity.
(scales as iris radius2 to 3)  The beam quality is better preserved.
Important for, e.g., FELs.

• HOMs are removed more easily. Better beam stability.
 More current accelerated. 
Important for, e.g., B-factories.

• Reduce the amount of beam scraping.  Less activation in,
e.g., proton machines.
Important for, e.g., SNS, Neutrino factory.

• Allows more coupling between cells in multicell structures.
 Better energy exchange between cells.
Important for e.g., high-energy machines.
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•• Critical magnetic RF fieldCritical magnetic RF field
limits maximum achievable 
field in a SRF cavity.

• But: What is the critical RF RF 
fieldfield? 

• Niobium: Weak type II 
superconductor

• Measured: Meissner state 
can persist meta-stably 
above Hc1 in RF fields 
(superheating field Hsh)

Hsh

Type II Superconductor

Applied B-
field

-µµµµ0M

Meissner State Vortex State Normal State

HC2HC1 HC
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Example of metastability: Raindrops: the Liquid-Gas Transition

-> Flux penetration only above the “Superheating”
Field > Hc1 (like 110% humidity)

Gas phase metastable for Tc > T > Tsp, spinodal temperature

Metastable
energy barrier B 

droplet nucleation
R2 surface tension 

cost
R3 bulk energy gain

Tc

Tsp

Superconductors: Flux penetration delayed above Hc1:
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What’s the superheating field?

Type II (Nb and Nb3Sn)

RF cavity operating conditions already above Hc1

ξ

λ

Type I (Pb)

Type II superconductors
• λ > ξ
• Magnetic flux lattice H > Hc1

Coherence length:
Decay of Ψ

Penetration depth:
Decay of Η

Energy cost

Energy
gain
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κ 

• Within ± 10% error 
bars:

down to 1.6 K

• Slop is in very 
good agreement 
with prediction 
from GL theory for 
material properties 
measured (κ= 3.5)























−∝

2
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c
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Blue: pulsed data points
Green: GL prediction for 
material properties 
measured

Nick Valles, Cornell University
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Type Tc Hc1 Hc Hc2 Fabrication
- K Oe Oe Oe -

Nb II 9.25 1700 2060 4000 bulk, film

Pb I 7.20 - 803 - electroplating
Nb3Sn* II 18.1 380 5200 ~25000 film
MgB2 II 39.0 300 4290 film

Hg I 4.15 - 411/339 - -

Ta I 4.47 - 829 - -

In I 3.41 - 281.5 - -

*) Other compounds with the same ββββ-tungsten or A15 structure are under investigation as well.

   
→→→→ →→→→ 
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SRF Cavities at Cornell: CESR

Challenge is to store high currents
stably (ampere) rather than achieve 
very high energy

Example: CESR
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SRF Cavities: Engine for Accelerators 

500 GeV cm 
energy

>20,000 cavities!

Challenge is to reach 
very high energy 
while maintaining 
good beam quality!

Example: ILCILC
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• SRF for high-energy-physics:
– TRISTAN, HERA, CESR, LEP, SPS, KEK-B

• SRF for nuclear science:
– CEBAF, ATLAS, SBSL, Florida State U., PIAVE, JAERI, New 

Delhi, CEN Saclay, Australian National U., U.  Of Washington, …
• SRF for neutron sources:

– SNS
• SRF for Free-Electron-Lasers:

– DESY VUV-FEL, TJANF IR-FEL, ELBE, …
• SRF for storage ring light sources:

– CHESS, Diamond, Canadian LS, Taiwan LS

Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 54






• 1965, Stanford U.: R&D on superconducting cavities 
starts

• 1968, Cornell: Cornell: R&D on superconducting cavities starts

• 1975, Cornell Electron SynchrotronCornell Electron Synchrotron: First SRF cavity in a 
high-energy-physics accelerator

• 1982, CESRCESR: First test of a SRF cavity in a high-energy-
physics storage ring. 

• 1990, Cornell: First TESLA (International Linear Collider, Cornell: First TESLA (International Linear Collider, 
ILC) workshopILC) workshop

• 1993, CornellCornell : First ILC multi-cell cavity passes 25 MV/m 
(TESLA design gradient)
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• 1990 to present, Tristan, CESR, HERA, LEP, KEK-B, …: 
High-energy-physics accelerators use SRF

• 1994, CEBAF: Operation starts with 310 cavities. Cavity 
design and R&D by CornellCornell

• 1999, CESRCESR: First storage ring runs entirely on SRF 
cavities.

• 2000 to present: Storage ring light sources are using the 
CESRCESR SRF cryostat design (Taiwan, Canada, England, 
China)

• 2004: International Technology Recommendation Panel 
recommends cold SRF technology for International Linear 
Collider (ILC)

• 2005: First cavity passes 50 MV/m (Cavity design and 
production by CornellCornell)
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1975
3 MV/m

1995
25 MV/m

1990
15 MV/m

2005
>40 MV/m

1985
6 MV/m

Electron 
multiplication

Thermal 
breakdown

Electron 
field 
emission

High field Q-
reductionLimitation:Limitation:

Solution:Solution: Improved 
cavity shape

High-
purity Nb

High-pressure 
rinsing

Electropolishing, 
high and low 
temperature 
baking, …
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Electron Field Emission

Micron size particles cause FE.
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Field Emission: Solutions (I)

BCP = HF + HNO3 + H3PO4

 Rinsing of cavities 
with up to 1000 psi 
ultra-pure water 
jets removes many 
particles.

• High Pressure Water Rinsing (HPR):

• Buffered Chemical Polishing (BCP):
 Etching removes 

damaged surface 
layer (100 µµµµm)
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Field Emission: Solutions (II)

 In some cases applying of high 
power can cause the destruction 
of field emitters and improve the 
cavity performance. 

 Reduction of field emission after 
the cavity is installed in the 
accelerator

• High-Power Processing:

• Clean Room Technology:
All cavities and vacuum 

components are cleaned 
and assembled in clean 
rooms.
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Note: The thermal conductivity, 
the superheating field and the 
surface resistance of Nb are 

highly temperature dependent! 
between 2 and 9 K.
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• High field Q-slope without field-emission!
• Effect not 100% clear yet…

High field Q drop  
 anomalous  losses
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• Electropolishing of cavities

• Low temperature (110 C) “in-situ” baking
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109

0 10 20 30 40
E acc [MV/m]

Q
0

1011

1010

Low field Q-drop
Medium field Q-drop

Sharp drop of 
the quality 
factor at B ≅≅≅≅100 
mT

Recovered by low 
temp. (110 C) “in-
situ” baking
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Getting highest fields: A Recipe
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• Overview
• Klystrons
• IOTs
• Solid state amplifiers
• …
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RF POWER SOURCES FOR CW SRF LINACS
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 DC acceleration to several 10kV, 100kV pulsed
 Energy modulation with a cavity
 Time of flight density modulation
 Excitation of a cavity with output coupler

Time of flight bunching

Only works for
non-relativistic electrons

Power < 1.5MW

I up to > 10A

%65,beam0 ≤= ηη IUP

Power < 40MW pulsed

The Klystron 
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Electron bunches are 

formed by velocity 
modulation from the 

cavities translated into 
density modulation in the 

drift spaces

Density modulation 
directly from cathode

Several bunching cavities, 
optional mod anode

Control grid

High gain (> 40 dB): low 
power drive amplifier

Low gain (~22 dB): high 
power drive amplifier 

(expensive)
High efficiency in 

saturation, which drops 
rapidly at reduced 

power

Higher efficiency, which 
does not drop quickly at 
reduced power: highly 

linear device
Longer, expensive 

device
Shorter, less expensive 

tube
Can be designed for 

very high power 
operation

Output power is limited 
though R&D for high 

power tubes are under 
way

Efficiency of Klystron and IOT
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• IOTs have a cathode with a 
control grid 0.1 mm in front of 
it like a triode. 

• They then use high voltage 
DC and a magnetic lens to 
focus a modulated high 
energy electron beam 
through a small drift tube like 
a klystron. This drift tube 
prevents backflow of 
electromagnetic radiation.

• The bunched electron beam 
passes through a resonant 
cavity, equivalent to the 
output cavity of a klystron. 
The electron bunches excite 
the cavity, and the 
electromagnetic energy of 
the beam is extracted by a 
coaxial transmission line.

Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 82





 

3 kW
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3 kW

3W
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50 

50 

50 

CirculatorCirculator

50 Ω

RF monitors

10 kW amplifier architecture. Circulators and dummy load are 
outside the amplifier cabinet, at high power level. Green elements 
are water cooled.

Two 10 kW amplifiers.
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