

Example 5: TJNAF 1A Cryomodule Design

FEL	Amper	e-class	module	draft	specs.
					A MARK MARK AND A MARK

Voltage	100-120 MV		
Length	~10m		
Frequency	750 MHz		
Beam Aperture	>3"		
BBU Threshold	>1A		
HOM Q's	<10 ⁴		

JLab FEL proposal:

5-cell waveguide damped cavity

CEBAF cavity

Matthias Liepe, P4456/7656, Spring 2010, Cornell University

Slide 25

Beam spectrum, 750 MHz, 1A 2 pass, 50.2m path length (~22 kW below cutoff)

Beam spectrum, 75 MHz, 100mA 2 pass, 50.2m path length (>5 kW below cutoff?)

BCS theory

- Attraction between electrons with antiparallel momenta k and spins due to exchange of lattice vibration quanta (phonons)
- Instability of the normal Fermi surface due to bound states of electron (Cooper) pairs
- Bose condensation of overlapping Cooper pairs in a coherent superconducting state.
- Scattering on electrons does not cause the electric resistance because it would break the Cooper pair

The strong overlap of many Cooper pairs results in the macroscopic phase coherence

What is the phase coherence?

ectron for itsel

Slide 37

Matthias Liepe, P4456/7656, Spring 2010, Cornell University

GL theory

the linear London equations

$$\label{eq:constraint} \frac{\partial \vec{J}_s}{\partial t} = -\frac{\vec{E}}{\lambda^2 \mu_0}, \qquad \qquad \lambda^2 \nabla^2 \vec{H} - \vec{H} = 0$$

along with the Maxwell equations describe the electrdynamics of SC at all T if:

- J_s is much smaller than the depairing current density J_d
- the superfluid density n_s is unaffected by current
- Generalization of the London equations to nonlinear problems
- Phenomenological Ginzburg-Landau theory (1950, Nobel prize 2003) . was developed before the microscopic BCS theory (1957).
- GL theory is one of the most widely used theories

Thus one can apply the same treatment to a superconductor as was used for a normal conductor before with the substitution of the newly obtained conductivity.

Surface impedance of superconductors

The surface impedance

$$Z_{s} = \sqrt{\frac{\omega\mu_{0}}{2\sigma}} (1+i) \Longrightarrow \sqrt{\frac{\omega\mu_{0}}{2(\sigma_{n} - i\sigma_{s})}} (1+i)$$

The penetration depth

$$\delta = \frac{1}{\sqrt{\pi f \mu_0 \sigma}} \Longrightarrow \frac{1}{\sqrt{\pi f \mu_0 (\sigma_n - i\sigma_s)}}$$

- Note that $1/\omega$ is of the order of 100 ps whereas the relaxation time for normal conducting electrons if of the order of 10 fs. Also, $n_s >> n_n$ for $T << T_c$, hence $\sigma_n << \sigma_s$.
- Then

$$\delta \approx (1+i)\lambda_L \left(1+i\frac{\sigma_n}{2\sigma_s}\right)$$
 and $H_y = H_0 e^{-x/\lambda_L} e^{-ix\sigma_n/2\sigma_s\lambda_L}$

- The fields decay rapidly, but now over the London penetration depth, which is much shorter than the skin depth of a normal conductor.
- For the impedance we get

$$Z_s \approx \sqrt{\frac{\omega\mu_0}{\sigma_s}} \left(\frac{\sigma_n}{2\sigma_s} + i\right) \quad X_s = \omega\mu_0\lambda_L \quad R_s = \frac{1}{2}\sigma_n\omega^2\mu_0\lambda_L^3$$

Matthias Liepe, P4456/7656, Spring 2010, Cornell University

Slide 43

BCS surface resistivity

Surface impedance

$$Z_s \approx \sqrt{\frac{\omega\mu_0}{\sigma_s}} \left(\frac{\sigma_n}{2\sigma_s} + i\right) \quad X_s = \omega\mu_0\lambda_L \quad R_s = \frac{1}{2}\sigma_n\omega^2\mu_0\lambda_L^3$$

- One can easily show that X_s >> R_s → the superconductor is mostly reactive.
- The surface resistivity is proportional to the conductivity of the normal fluid! That is if the normal-state resistivity is low, the superconductor is more lossy. Analogy: a parallel circuit of a resistor and a reactive element driven by a current source. Observation: lower Q for cavities made of higher purity Nb.
- Calculation of surface resistivity must take into account numerous parameters. Mattis and Bardeen developed theory based on BCS, which predicts

$$R_{BCS} = A \frac{\omega^2}{T} e^{-\left(\frac{\Delta}{k_B T_c}\right) \frac{T_c}{T}},$$

where A is the material constant.

- While for low frequencies (≤ 500 MHz) it may be efficient to operate at 4.2 K (liquid helium at atmospheric pressure), higher frequency structures favor lower operating temperatures (typically superfluid LHe at 2 K, below the lambda point, 2.172 K). $(f[MHz])^2 = (\frac{-17.67}{T})^2$
- Approximate e

expression for Nb:
$$R_{BCS} \approx 2 \times 10^{-4} \left(\frac{J[\text{MHZ}]}{1500} \right) \frac{1}{T} e^{(-T)}$$

[/][Ohm]

Critical Magnetic Field

- But: What is the critical <u>RF</u> <u>field</u>?
- Niobium: Weak type II superconductor
- Measured: Meissner state can persist meta-stably above H_{c1} in RF fields (superheating field H_{sh})

Type II Superconductor

Slide 46

Why Nb?

	Туре	T _c	H _{c1}	H _c	H _{c2}	Fabrication
	-	K	Oe	Oe	Oe	-
Nb	П	9.25	1700	2060	4000	bulk, film
Pb	Ι	7.20	-	803	-	electroplating
Nb ₃ Sn*	II	18.1	380	5200	~25000	film
MgB ₂	п	39.0	300	4290		film
Hg	Ι	4.15	-	411/339	-	-
Та	Ι	4.47	-	829	-	-
In	Ι	3.41	-	281.5	-	-

*) Other compounds with the same β -tungsten or A15 structure are under investigation as well.

- High critical temperature (cavities with High-T_c sputter coatings on copper have shown much inferior performance in comparison to niobium cavities) → lower RF losses → smaller heat load on refrigeration system.
- High RF critical field, which of the order of H_c. Strong flux pinning associated with high H_{c2} is undesirable as it is coupled with losses due to hysteresis. Hence a 'soft' superconductor must be used.
- Good formability is desirable for ease of cavity fabrication. Alternative is a thin superconducting film on a copper substrate.
- Pure niobium is the best candidate, although its critical temperature Tc is only 9.25 K, and the superheating field about 200 mT. Nb₃Sn with a critical temperature of 18.1 K looks more favorable at first sight, however the gradients achieved in Nb₃Sn coated niobium cavities so far were always below 15 MV/m, probably due to grain boundary effects in the Nb₃Sn layer. For this reason niobium is the current preferred superconducting material.

Slide 49

Residual surface resistivity

At low temperatures the measured surface resistivity is larger than predicted by theory:

$$R_s = R_{BCS}(T) + R_{res}$$

where R_{res} is the temperature independent residual resistivity. It can be as low as 1 nOhm, but typically is ~10 nOhm.

- Characteristics:
 - no strong temperature dependence
 - no clear frequency dependence
 - can be localized
 - · not always reproducible
- Causes for this are:
 - · magnetic flux trapped in at cooldown
 - dielectric surface contaminations
 - (chemical residues, dust, adsorbates)
 - NC defects & inclusions
 - surface imperfections
 - hydrogen precipitates

Matthias Liepe, P4456/7656, Spring 2010, Cornell University

Slide 59

Trapped magnetic flux

- Ideally, if the external magnetic fiels is less than H_{c1}, the DC flux will be expelled due to Meissner effect. In reality, there are lattice defects and other inhomogeneities, where the flux lines may be "pinned" and trapped within material.
- The resulting contribution to the residual resistance is

$$R_{mag} = \frac{H_{ext}}{2H_{c2}}R_n$$

- For high purity (RRR=300) Nb one gets

$$R_{mag} = 0.3(n\Omega)H_{ext}(mOe)\sqrt{f(GHz)}$$

- = Earth's field is 0.5 G, which produces residual resistivity of 150 nOhm at 1 GHz and $Q_0 < 2 \times 10^9$
- Hence one needs magnetic shielding around the cavity to reach quality factor in the 10¹⁰ range.
- Usually the goal is to have residual magnetic field of less than 10 mG.

Field Emission: Solutions (II)

Clean Room Technology:

All cavities and vacuum components are cleaned and assembled in clean rooms.

High-Power Processing:

- In some cases applying of high power can cause the destruction of field emitters and improve the cavity performance.
- Reduction of field emission after the cavity is installed in the accelerator

Q disease

The hydrogen dissolved in bulk niobium can under certain conditions during cooldown precipitate as a lossy hydride at the niobium surface. It has poor superconducting properties: Tc = 2.8 K and Hc = 60 Oe. This is known as the "Q-disease". At temperatures above 150 K very high concentration of hydrogen is required to form the hydride phase ($10^3 - 10^4$ ppm). However, in the temperature range from 75 to 150 K the required hydrogen concentrations drops to as low as 2 wt ppm while its diffusion rate remains significant. This is the danger zone.

Mitigation:

- rapid cooldown through the danger temperature zone;
- degassing hydrogen by heating the Nb cavity in vacuum of better than 10⁻⁶ Torr at 600°C for 10 hrs or at 800°C for 1 to 2 hrs.;
- keep the acid temperature below 15°C during chemical etching to minimize hydrogen absorption in the niobium

Matthias Liepe, P4456/7656, Spring 2010, Cornell University

Slide 65

Thermal breakdown

If there is a localized heating, the temperature of the "hot spot" will increase with field. At a certain field H becomes larger then Hsh(T), causing transition to the normal conducting state and a thermal runaway and the filed collapses (loss of superconductivity or quench).

RRR

- Residual Resistivity Ratio (RRR) is a measure of material purity and is defined as the ratio of the resistivity at 273 K (or at 300 K) to that at 4.2 K in normal state.
- High purity materials have better thermal conductivity, hence better handling of RF losses.
- The ideal RRR of niobium due to phonon scattering is 35,000. Typical "reactor grade" Nb has RRR ≈ 30. Nb sheets used in cavity fabrication have RRR ≥ 200.

where the f_i denote the fractional contents of impurity i (measured in weight ppm) and the r_i the corresponding resistivity coefficients which are listed in the following table.

Ta	able II V	Weight	factor r	; of some	impurities	(see eq	uation	(4))
		0			1			< //

Impurity atom i	N	0	C	Н	Та
r_i in 10 ⁴ wt. ppm	0.44	0.58	0.47	0.36	111

```
Matthias Liepe, P4456/7656, Spring 2010, Cornell University
```

Slide 67

Improving thermal conductivity

Q-slopes

- The observed *Q* of a niobium cavity shows several "interesting" features with increasing field.
- As there is still no commonly accepted explanation of physics behind each of the Q-slopes
- In the low-field region Q surprisingly increases. This does not present any limitation of cavity performance. Mild baking generally enhances the low-field Q-slope.
- At medium fields Q gradually decreases, a common feature of all Nb cavities. This is generally attributed to a combination of surface heating and "nonlinear" BCS resistance. Mild baking (100 – 120°C for 48 hrs) usually decreases this Q-slope.
- Finally, there is a strong Q-drop at the highest fields. This is still highly active area of basic SRF research. Mild baking helps under certain conditions.
- Eventually superconductivity quenches due to a thermal instability at defects or due to exceeding.

- High Field Q-Slope
- High field Q-slope without field-emission!
- Effect not 100% clear yet...

High/medium/low RF power

- They then use high voltage DC and a magnetic lens to focus a modulated high energy electron beam through a small drift tube like a klystron. This drift tube prevents backflow of electromagnetic radiation.
- The bunched electron beam passes through a resonant cavity, equivalent to the output cavity of a klystron. The electron bunches excite the cavity, and the electromagnetic energy of the beam is extracted by a coaxial transmission line.

Frequency Output Power Beam Voltage Efficiency Gain Class of operation 1.3GHz 16kW <28kV >60% >20dB B or AB

- CW or pulse operation
- 35kW CW or 80 kW pulse

