

Lecture 4

2. Charged particles in magnetic fields

- 2.1 Basics
- 2.2 Magnets
- 2.3 Multipole expansion
- 2.4 Superconducting magnets

Matthias Liepe, P4456/7656, Spring 2010, Cornell University

Slide 1

2.1 Basics

Lorentz force Maxwell's equations Magnetic boundary conditions

Maxwell's equations (II) in differential form: $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_{\tau}\epsilon_{\tau}} \qquad \vec{\nabla} \times \vec{E}' = -\frac{\partial \vec{B}}{\partial \epsilon}$ $\vec{\nabla} \cdot \vec{B} = 0 \qquad \vec{\nabla} \times \vec{B}' = \mu_{\tau} \mu_{\tau} \left(\vec{J}' + \epsilon_{\tau}\epsilon_{\tau} \frac{\partial \vec{E}}{\partial \epsilon} \right)$ electrical displacement $\vec{D} = E_r E_r \vec{E}_r \vec{E}_r$ magnetiting field $\vec{H} = \frac{1}{\mu_{x}} \vec{B}^{2}$ $\vec{T} permeability$ Slide 5 Matthias Liepe, P4456/7656, Spring 2010, Cornell University Static magnetic fields in accelerators otatic: $\frac{\partial \vec{B}}{\partial t} = 0$, $\vec{E} = 0$ charge free space near bean: j'=0, Mr=1, Er=1 $\vec{\nabla} \times \vec{B} = M_{\pi} h_{\theta} \left(\vec{j} + \mathcal{E}_{\pi} \mathcal{E}_{\theta} \frac{\partial \vec{E}}{\partial t} \right) = 0$ =) \vec{B} can be written as the gradient of a scalar potential: $\psi(\vec{r})$: $\vec{B} = -\vec{\nabla} \psi(\vec{r})$ (since $\vec{\nabla} \times \vec{\nabla} \psi = 0$ always) $\vec{z} = |a|_{SO}$: $\vec{P} \cdot \vec{B} = 0$ =) $\vec{\nabla}^2 \psi(r) = 0$ (x=0,z=0) is the beam's design curve Slide 6 Matthias Liepe, P4456/7656, Spring 2010, Cornell University

Dipoles { $sin(1 \cdot \varphi)$ -dependence} C₁ Symmetry -- (+,-) in Ψ $(C_n \text{ Symmetry})$ around the \underline{s} -axis: sign change after + R (N,S) in B sign change after $\Delta \varphi = \frac{\pi}{n}$ homogeneous field: $\vec{B} = B_{\sigma} \vec{e}_{z}$ =) required potential: Y = - Bo Z (=) B'= - D'y = Bo P =) Equipotentials: 2 = const =) two horizontal iron poles, spaced by 2a =) bending radius: $R = \frac{P}{QR}$ Slide 15 Matthias Liepe, P4456/7656, Spring 2010, Cornell University **Different Dipole Magnets** C-shape magnet: H-shape magnet: Window frame magnet: \boxtimes \boxtimes \bigotimes \square \boxtimes \boxtimes at surface of pole: HI, o = Mr HIFE $\mu_r \gg 1$ $2nT = \oint \vec{H} \cdot d\vec{s} = H_0 2a + H_{Fe} e_{Fe}$ ί_{Fe} = Ho2a + Ho2a + Ho l Fe ~ Ho2a So= M. <u>mI</u> (neglecting fringe fields, iron saturation) $n \cdot I$ H_0 2a $H_{\rm F}$ =) dipole stranger $\frac{1}{R} = \frac{4}{2}B_0 = \frac{4}{2}\frac{\mu_0 nT}{R}$ Slide 16 Matthias Liepe, P4456/7656, Spring 2010, Cornell University

Quadrupole Fields (II)

=) guadropole of length e: $focal length: \frac{1}{f} = kl$ thin lens: f>>l Note: in guadropole: $F_x = g \lor B_z = -g \lor g \And = f(\varkappa)$ $F_z = -g \lor B_\varkappa = g \lor g \varkappa = f(\varkappa)$ =) in linear beam optics (dipols + normal Convoluted) guadropoles): horizontal and vertical motion are decompled ?

Matthias Liepe, P4456/7656, Spring 2010, Cornell University

Slide 21

Real Quadrupoles

Matthias Liepe, P4456/7656, Spring 2010, Cornell University

