Lecture 6

3. Linear transverse beam optics

3.1 Equation of motion

3.2 General solution of the equation of motion

3.1 Equation of motion in linear approximation

A moving (curvi-linear) coordinate system

Equation of Motion (I)

$$
\frac{d^{2}}{d t^{2}} \vec{r}=\vec{f}_{r}\left(\vec{r}, \frac{d}{d t} \vec{r}, t\right)
$$

3 dimensional ODE of $2^{\text {nd }}$ order can be changed to a
6 dimensional ODE of $1^{\text {st }}$ order:
$\left.\begin{array}{l}\frac{d}{d t} \vec{r}=\frac{1}{m \gamma} \vec{p}=\frac{c}{\sqrt{p^{2}-(m c)^{2}}} \vec{p} \\ \frac{d}{d t} \vec{p}=\vec{F}(\vec{r}, \vec{p}, t)\end{array}\right\} \quad \frac{d}{d t} \vec{Z}=\vec{f}_{Z}(\vec{Z}, t), \quad \vec{Z}=(\vec{r}, \vec{p})$
If the force does not depend on time, as in a typical beam line magnet, the energy is conserved so that one can reduce the dimension to 5 .

Furthermore, the time dependence is often not as interesting as the trajectory along the accelerator length " s ". Using " s " as the independent variable reduces the dimensions to 4.

$$
\frac{d}{d s} \vec{z}=\vec{f}_{z}(\vec{z}, s), \quad \vec{z}=\left(x, y, p_{x}, p_{y}\right)
$$

Equation of Motion (II)

Usually one prefers to compute the trajectory as a function of "s" along the accelerator even when the energy is not conserved, as when accelerating cavities are in the accelerator.

Then the energy " E " and the time " t " at which a particle arrives at the cavities are important. And the equations become 6 dimensional again:

$$
\frac{d}{d s} \vec{z}=\vec{f}_{z}(\vec{z}, s), \quad \vec{z}=\left(x, y, p_{x}, p_{y},-t, E\right)
$$

Equation of motion in linear approximation

Inthefollowing:

- look at transverse motion only:
$x, z, \quad x^{\prime}=\frac{d x}{d s}=\frac{d x}{d t} \frac{d t}{d s}=\frac{v_{x}}{V_{s}}=\frac{p_{x}}{P_{s}} \approx \frac{P_{x}}{P_{0}}$
$z^{\prime}=\frac{d z}{d s}=\frac{d z}{d t} \frac{d t}{d s}=\frac{V_{z}}{V_{s}}=\frac{P_{z}}{P_{s}} \simeq \frac{p_{z}}{p_{0}}$
in addition: need $\delta=\frac{E-E_{0}}{\rightarrow E_{0}} \approx \frac{P-P_{0}}{P_{0}} \leftarrow d$ sign momenta,
- assume only linear cosign enejg highlyrelativitic
no electric fields constant magnetic fields (transverse),
dipole
quad.
only! $\left\{\begin{array}{l}B_{x}= \pm \frac{p_{0}}{q} k z \quad<\quad \text { quadmpole strength } \\ P_{z}=\frac{p_{0}}{q} \frac{k^{1 / P}=\text { curvature in }}{\rho} \pm \frac{p_{0} \text { dipole fill d }}{q} k x\end{array}\right.$
- only consider first order terms in, small quantities

Equation of motion in linear approximation

particle position vector:

$$
\begin{gathered}
\vec{r}=\vec{R}_{0}+r \vec{e}_{x}+z \vec{e}_{z} \\
r=\rho+x
\end{gathered}
$$

for small $d \theta$ (cylindrical coordinates!)

$$
d \vec{e}_{x} \frac{\vec{e}_{x}(\theta+d \theta)}{\vec{e}_{x}(\theta)} d \theta \quad d \vec{e}_{x}=d \theta \vec{e}_{s}
$$

(cire. arc)

$$
\begin{aligned}
& \begin{array}{ll}
\overrightarrow{e_{s}}(\theta) & \begin{array}{ll}
\vec{e}_{s} & \\
\vec{l}_{\vec{e}}(\theta+d \theta) & \vec{e}_{s}=-d \theta \vec{e}_{x} \\
d \theta & d \vec{e}_{z}=0
\end{array}
\end{array} \\
& \Rightarrow \frac{d \vec{v}}{d t}=\dot{\vec{r}}=\dot{r} \vec{e}_{x}+r \dot{\vec{e}}_{x}+\dot{z} \vec{e}_{z}=\dot{r} \vec{e}_{x}+r \dot{\theta} \vec{e}_{s}+\dot{z} \vec{e}_{z}
\end{aligned}
$$

Equation of motion in linear approximation
\Rightarrow for acceleration:
=0 here (n olongitudinal acceleration)

$$
\ddot{\vec{r}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \vec{e}_{x}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \vec{e}_{s}+\ddot{z} \vec{e}_{z}
$$

- now: $\vec{F}=\frac{d \vec{p}}{d t}=y_{m} \ddot{\vec{r}}$ since $\gamma=\cos$ there $(\vec{F} \perp \vec{v})$

$$
\begin{aligned}
\Rightarrow m \ddot{\vec{r}}=q \vec{v} \times \vec{B}= & q\left[\dot{z} B_{s}-r \dot{\theta} B_{z}\right) \vec{e}_{x}+\left(\dot{r} B_{z}-\dot{z} B_{x}\right) \vec{e}_{s} \\
& \left.+\left(r \dot{\theta} B_{x}-\dot{r} B_{s}\right) \vec{e}_{z}\right]
\end{aligned}
$$

\Rightarrow assume $B_{S}=0$ bangatial fields only

$$
\begin{aligned}
m\left(\ddot{r}-r \dot{\theta}^{2}\right) & =-q r \dot{\theta} B_{z}(x, z, s) \\
& =q r \dot{\theta} B x(x, z, s)
\end{aligned}
$$

\Rightarrow for linear beam op tics:

$$
B_{x}= \pm g z= \pm \frac{p_{0}}{q} k z \quad B_{z}=B_{0} \pm g x=\frac{p_{0}}{q} \frac{1}{\rho} \pm 4 x
$$

Equation of motion in linear approximation

$$
\begin{aligned}
& \Rightarrow \text { with } r=\rho+x, \rho=\text { const within given dipole magnet } \\
& \quad m\left(\ddot{x}-r \dot{\theta}^{2}\right)=-r \dot{\theta}\left(p_{0} \frac{1}{\rho} \pm p_{0} k x\right) \\
& \quad \text { m } \ddot{z}= \pm r \dot{\theta} p_{0} k z \\
& \Rightarrow \text { since } v_{s}=r \dot{\theta}>v_{x}, v_{z} \\
& \quad \Rightarrow v_{s}=r \dot{\theta} \approx|\vec{v}|
\end{aligned}
$$

\Rightarrow aboi replace time variable by arc length along design orbit:

$$
\begin{gathered}
s=v t \Rightarrow \quad \ddot{x}=\frac{d^{2} x}{d t^{2}}=\frac{d^{2} x}{d s^{2}}\left(\frac{d s}{d t}\right)^{2}=x^{\prime \prime} v^{2} \\
\ddot{z}=z^{\prime \prime} v^{2} \\
\frac{P_{0}}{P} k x=\frac{1}{r}-\frac{P_{0}}{P} \frac{1}{\rho} \quad z^{\prime \prime}=\frac{P_{0}}{P} k z=0
\end{gathered}
$$

$$
\Rightarrow \quad x^{\prime \prime} \pm \frac{p_{0}}{\rho} k x=\frac{1}{r}-\frac{\ddot{z}}{p}=z^{\prime}
$$

Equation of motion in linear approximation
particle momentum: $\quad P=P_{0}(1+\delta) \quad \delta=\frac{\Delta P}{P_{0}} \in \underset{\substack{\text { mometer } \\ \text { error of }}}{\text { Particle }}$
\Rightarrow to first order approximation: particle
for $\delta \ll 1: \frac{1}{\rho}=\frac{1}{p_{0}(1+\delta)} \approx \frac{1}{p_{0}}(1-\delta)$
for $\rho \gg x: \quad \frac{1}{r}=\frac{1}{\rho(1+x / \rho)} \simeq \frac{1}{\rho}\left(1-\frac{x}{\rho}\right)$
\Rightarrow to frost order in x, z, δ :

$$
\begin{aligned}
& x^{\prime \prime}+\left(\pm k+\frac{1}{\rho^{2}}\right) x=\frac{\delta}{\rho}(+\sigma(2)+\theta(3)+\ldots) \\
& z^{\prime \prime} \mp k z=O(+\sigma(2)+\theta(3)+\ldots)
\end{aligned}
$$

equ. of trans verse motion in linear beam or tics

Equation of motion in linear approximation

$$
\begin{aligned}
& \text { - } / \rho^{2} \text { tern: "weal focussing" in dipole magnet } \\
& \text { - in dipole: } k=0 \\
& \text { - in quadrupule: } 1 / \rho=0 \\
& \text { - in drift: } k=0,1 / \rho=0 \\
& \text { Note: all terms on the rigit-hand side can be } \\
& \text { treated as small perturbations! }
\end{aligned}
$$

3.2 General solution of the equation of motion

linear, unperturbed equation of motion
have homogeneous differential equation:
(eq1) $\left.u^{\prime \prime}+\mathcal{K}(s) U=0\right\}$ like harmonic oscillator frequency
where u stands for x or z
and $\mathcal{K}= \pm K+\frac{1}{\rho^{2}}$ or $\mathcal{K}=\mp K$ for give. \Rightarrow principal solutions (there should be two linearly mat indef. solutions!) for $\mathrm{t}_{2}=$ cont:
for $Y_{K}>0 \quad\left((s)=\cos \left(\sqrt{\gamma_{K}} s\right)\right.$ and $S(s)=\frac{1}{\sqrt{K}} \sin (\sqrt{K} s)$
for $X<0 \quad C(S)=\cosh (\sqrt{|x| 1} s)$ and $S(S)=\frac{1}{\sqrt{|X|}} \sinh (\sqrt{|x|})$
with initial conditions:

$$
\begin{array}{ll}
C(0)=1 & C^{\prime}(0)=\left.\frac{d C}{d S}\right|_{0}=0 \\
S(0)=0 & S^{\prime}(0)=\left.\frac{d S}{d S}\right|_{0}=1
\end{array}
$$

\Rightarrow any arbitrary solution U(S) can be expressed as a linear combination of these ter o principal solutions:

$$
\left.\begin{array}{l}
u(s)=c(s) u_{0}+s(s) u_{0}^{\prime} \\
u^{\prime}(s)=c^{\prime}(s) u_{0}+s^{\prime}(s) u_{0}^{\prime}
\end{array}\right\}(e q u \cdot 3)
$$

where U_{0} and $U_{0}{ }^{\prime}$ are the initial values of $U(s)$ and $u^{\prime}(s)$ at $s=0$

- general bean line with several magnets:

$$
Y_{Q}=y_{r}(s)
$$

\Rightarrow principle solutions (so-called sine like and cosine like solutions) can be found witt in, ital conditions as above for Ie = const case!
$\left[u^{\prime \prime}+\mathcal{T}(s) u=0\right.$ insert ansate (equ3)

$$
\Rightarrow\left[s^{\prime \prime}(s)+\mathcal{Y}(s) s(s)\right] u_{0}+\left[c^{\prime \prime}(s)+\mathcal{Y}^{\prime}(s) c(s)\right] u_{0}^{\prime}=0
$$

for any initial condition (U_{0}, U_{0}^{\prime})

$$
\begin{aligned}
\Rightarrow S^{\prime \prime}(s)+\mathcal{L}(s) S(s) & =0 \\
C^{\prime \prime}(s)+\mathcal{L}(s) C(s) & =0
\end{aligned}
$$

i.e. general solution can be witters as a sum of two lineally indenendent solutions (S) and S(S)]

Matrix formulation:
now: Solution (eq. J) of equ. of motion (1)
in matrix formulation

$$
\underbrace{\left[\begin{array}{l}
u(s) \\
u^{\prime}(s)
\end{array}\right]}_{\begin{array}{c}
\text { at exit } \\
\text { of beanlimel } \\
\text { magnet }
\end{array}}=\underbrace{\left[\begin{array}{ll}
c(s) & s(s) \\
c^{\prime}(s) & s^{\prime}(s)
\end{array}\right]}_{\begin{array}{c}
\text { transformation } \\
\text { matrix of given } \\
\text { beaminal magnet }
\end{array}} \underbrace{\left[\begin{array}{l}
u_{0} \\
u_{0}^{\prime}
\end{array}\right]}_{\substack{\text { initial } \\
\text { condition }}}
$$

\Rightarrow from $J X=$ cost solution: can obtain trons formation matrix for each individual berm line element (mangy)
\Rightarrow by repeated matrix multiplication, con follow particle trajectory along a con plicated berm line!

