Recap: Force Problems:

1. \(\Sigma F_{\text{on object}} = 0 \), then \(\vec{a} = 0 \)
2. \(\Sigma \vec{F} \) on object \(= m \) object \(\vec{a} \) object
3. \(F_{A \text{ on } B} = -F_{B \text{ on } A} \)

- Weight: \(\vec{W} = mg \), always down
- Normal force: \(\vec{N} \) : always \(\perp \) to surface, self-adjust so that \(\Sigma F_{\perp} = 0 \)
- Friction: always \(\parallel \) to surface, opposes relative motion
- Tension \(\vec{T} \): \(|T_1| = |T_2| \) at rope ends, if \(\vec{a}_{\text{rope}} = 0 \) and/or \(m_{\text{rope}} \neq 0 \)
- Spring force: \(\vec{F}_{\text{spring}} = -k \vec{x} \)
Spring Force: F_{spring}

For ideal spring:

$F_{\text{by spring on block}} = -kx$

Restoring force

Spring constant

$x = 0$

For spring on object

relaxed length
Today:

- Forces
 - Solving force problems
 - Why do tennis nets sag?
Example:

- Define "objects".
- Draw vectors representing each of the external forces acting on the object.

"Free body diagram"

For rope:
- Represent object by "x".
- F_y by you on rope.
- F_y by mass on rope.

For mass m:
- Normal pair N.
- F_r friction.
- $F_{rope on man}$.
- W.
Forces: General Method for Solving Force Problems

1. Draw a diagram/sketch of the problem, define objects.
2. Choose "good" coordinate system *important*
3. Draw a "free body diagram" (FBD) for each object (or group of objects)
 - indicate all external forces on that object
4. Resolve forces into components F_x, F_y along chosen coordinate axes
5. Use \sum\hspace{1cm} $\sum F_x = m_{obj} a_x, obj$
 \hspace{1cm} $\sum F_y = m_{obj} a_y, obj$
Note: - never draw $F_{\text{net}} = m\ddot{a}$ on a FBD!

$m\ddot{a}$ is the net result of the external forces, not an additional force

- all forces are due either to direct physical contact between objects, or due to force which acts at a distance (e.g. gravity, EM forces)

- no mysterious forces

- only one of the two forces in an NICE force pair should appear on a given FBD!
\[F_{\text{pull}} = mg = m \times 10 \text{m/s}^2 \]

a = ?

- A. 0
- B. \(g \)
- C. \(g \)
- D. insufficient information

FBD of mass \(m \):

- \(F_y \) (normal force on \(m \)) = \(T = F_{\text{pull}} \)
- \(\vec{F}_y \) (force on \(m \)) = \(\vec{T} \) (force on \(m \))
- Force on \(m \) at both ends of the rope is the same.

\[2F_y = ma_y \]

\[= T - W \]

\[= m(10 \text{m/s}^2) - mg \]

\[= 0 \]

\[\Rightarrow a_y = 0 \]
\[\frac{T_1}{T_3} = ? \]

A. \(\frac{1}{3} \)
B. \(\frac{1}{2} \)
C. 1
D. 2
E. 3
Method II:

- FBD of 3rd mass (bottom mass)

\[\sum F_y = m a_y = 0 \]

\[W = m g \]

\[T_3 = W = m g \]

- FBD of all 3 masses = "object":

\[\sum F_y = m_{\text{total}} a_y = 0 \]

\[= T_1 - W_{3,}\text{m} \]

\[= T_1 - 3 m g \]

\[\Rightarrow T_1 = 3 m g \]

\[\Rightarrow \frac{T_1}{T_3} = \frac{3}{1} \]
Method II:

Mass 3 (bottom):

\[T_3 \downarrow \quad \downarrow \quad w = mg \]

\[\Rightarrow T_3 = w = mg \]

Mass 2 (middle):

\[T_2 \downarrow \quad \downarrow \quad w = mg \]

\[\Rightarrow T_2 = T_3 + w = mg + mg \]

\[= T_1 - T_2 - w \]

\[= T_1 - T_2 - mg \]

\[= T_2 + w \]

\[= mg + mg \]

\[= 2mg \]

\[\Rightarrow \frac{T_1}{T_3} = 3 \]

\[= 3mg \]
• The Powder River Basin is one of the world’s largest coal producing region.

• **200 miles** of **coal trains** leave the Powder River Basin every day, 365 days a year, bound for electricity generating plants.

• Trains can be up to **2 miles long**, and weigh **23,000 tons**.

• **Air drag** from head winds can reduce an empty train’s speed on level ground from **50 to 20 mph**.
In both cases, $\frac{T_1}{T_3} = 3$

If we add more masses, eventually rope 1 will break.
• A steep railroad grade is 1.5%
• (= 15 feet rise/1000 feet)
• The steepest mainline track in the U.S. has a 4% grade.

• How can you keep the couplers between cars from breaking?
(Couplers on coal trains break routinely.)
Front...

...end of train: locomotive in remote control mode
frictionless pulley

Pulley: change direction of rope and \(\neq \), but not \(\neq \)!

\[a = \frac{m_1 g}{m_1 + m_2} \]

Choose coordinate axis along direction of motion!
FBD of m_1 and m_2:

$\sum F_y = m_1a_{x,1} = m_1a$

$= W_1 - T = m_1g - T$ \(\uparrow + \gamma \) down!

$\sum F_x = m_2a_{x,2} = m_2a_{x,2} > 0$

$\Rightarrow N = W_2 = m_2g$

$\Rightarrow \sum F_x = m_2a_{x,2} = m_2a_{x,2} > 0$

\(\Rightarrow \) in extortion 2 into 1

$\frac{m_1a = m_1g - T = m_1g - m_2a}{m_1 + m_2}$

$\Rightarrow a = \frac{m_1g}{m_1 + m_2}$

\(\text{check: } m_1 \to 0 \Rightarrow a \to 0 \)$

$m_2 \to 0 \Rightarrow a \to g$