Recan:

Lecture 11,

What is the acceleration of a cyclist if he coasts without pedaling down Buffalo St.? (Neglect air resistance and any other forces from friction) 2 choose coord. system (\mathbf{i}) Eddy St. a=? along E direction XK of motion a=? θ Aurora St. A. $g \cos(\theta)$ (5) Use NIT: (3) FBD of Cyclist: KN'E always $ZF_{x} = ma_{x} = +W_{x}$ **B.** g sin (θ) = W sin O N'self-**C.** g tan (θ) = mg sim O O W=mg $a_x = g \sin \theta$ **D.** g / cos (θ) Fy=man (4) resolve into components: **E.** g / sin (θ) "-"sign = N= Wy Wx = Wsin Q ? these are the Wy = W cos & Smagnitudes of divection N = Wy Note: N + = mg cos O check for 0=01 the components

Other Applications

sag of power lines

power line and pole snapping by trees, ice

plucking of guitar strings

retrieving your car from a ditch

How does your body detect acceleration?

Today:

Forces

- Spring forces
- Springs in our bodies
- Solid on solid friction

Other types of springs:

· Contilever spring: F=0 F=0 Fon spring >0 V+y

· Coil spring: (watch...)

Faso

By how much does the spring stretch from its relaxed length?

The spring has stretched an amount x. What is the angle θ ? (Assume the surface on which the mass m slides is frictionless.) ofm 3 FBD θ=? Ź sin⁻¹ (kx/mg) B. sin (kx/mg) W., 🖄 cos⁻¹ (kx/mg) weng **&** cos (kx/mg) (Wy / = my co & $W_{\chi} = mg \sin \theta$ $ZF_x = ma_x = 0 = W_x - |F_{spon}| = mgsin\theta - kx = 0$ $\vec{a} = 0$ here $m_x = 0 - kx/$ =) $\sin \theta = \frac{kX}{mg}$ =) $\theta = \sin^{-1} \left(\frac{kX}{mg}\right)$

The spring has stretched an amount x. What is the acceleration a? (Assume the surface on which the 2 n mass m slides is frictionless.)

· For a given Fon springs, Keff gives the same stretch & as the combination of springs.

• Ask: which quantity - For x - is the same So the individual springs and the "effective" spring, and which quantities add to give the quantity for the "effective" spring?

Series of Springs: JEK, FEK, FEK, FF, Jon on springs add: DX 1 =) ZF=0 $\frac{2}{F} = K_{2} X_{2}$ $= \frac{X_{1}}{F} \frac{X_{2}}{F} \frac{X_{1}}{F} \frac{X_{2}}{F} \frac{$ $F=K_{1}x_{1}$ $x_i x_i = F$ + X_2 Fon = Kepp . X Note: Keff < min Ek, , Kez

Springs in our Bodies

F-x relation for a gastrocnemius tendon:

F-x relation for a foot arch:

Otolith Organ

- All vertebrates have at least 2 or 3 in each ear
- Measures orientation and acceleration.

Detecting orientation:

Detecting acceleration:

fs is 11 to surface coefficient of static $f_{s} \leq (f_{s})_{max} = M_{s} N_{s} \qquad normal force on object$ static friction force f, self-adjusts to concel F' to prevent relative motion, but only up to maximum value (fs) max