Recap

Hooke's "law" for an ideal spring:
$F_{\text {spring on ob }}=\frac{-}{\pi} K x$ restoring force

- Parallel springs: $k_{\text {eff }}=k_{1}+k_{2}+k_{3}+\ldots$ obj on spring $=+k_{x}$
- Series of spoings: $\frac{1}{k_{e f f}}=\frac{1}{k_{1}}+\frac{1}{k_{2}}+\frac{1}{k_{3}}+\cdots$.
- Solid on Solid Friction:
- force 11 to interface between two surfaces that opposes relative motion
case (1): Static friction force \vec{f}_{s} :
- no relative motion of surfaces in contact
- self-adjusts to prevent relative motion, up to maximum:

$$
\left(f_{s}\right)_{\max }=\mu_{s} N
$$

Recap
\Rightarrow static friction:

$$
\begin{array}{ll}
f_{S} \leq\left(f_{S}\right)_{\text {max }} & =\mu_{S} N \in \text { normal force, } \\
\text { self-adjust } & =\text { force } 1 \text { to } \\
& \text { coefficient of } \\
& \text { surface, pros sing friction } \\
& \text { surfaces together }
\end{array}
$$

Note $|N|$ is not necessarily equal to $|W|$!
Example

As the applied force F is increased, how does the static friction force f_{s} vary? (Assume F is less than

$$
\begin{aligned}
& \text { that needed to make the block move.) } \\
& \vec{a}=0 \Rightarrow \Sigma \vec{F}=0 \text { hare } \\
& \Rightarrow F=f_{s} \\
& \text { Jelf-adjusts! } \quad \overrightarrow{\mathrm{f}}_{\mathrm{s}} \longrightarrow \square \longrightarrow \overrightarrow{\mathrm{~F}} \quad \square \quad \text { surface will }
\end{aligned}
$$

Series and Parallel Combinations in Muscle

 Structure of Striated Muscles:

Individual muscle cell (myofiber)

Basic Building Block: The Sarcomere

Microscopic mechanism of muscle force production and contraction:

Some Numbers:

Sarcomere length:
fully extended: $\quad 2.3 \mu \mathrm{~m}$
fully contracted: $\quad \mathbf{1 . 0} \boldsymbol{\mu m}$

Force per myosin head: $\sim 5 \mathrm{pN}=5 \times 10^{-12} \mathrm{~N}$.

How to get a big motion/contraction?

- Connect M sarcomeres together in series:
$\Delta x_{\text {tot }}=M \times(\Delta x$ of one sarcomere $)$
Muscle contracts by $\sim \mathbf{4 0 \%}$ of its length.

How to get a big motion/contraction?

- Connect M sarcomeres together in series:
$\Delta x_{\text {tot }}=M \times(\Delta x$ of one sarcomere) Muscle contracts by $\sim 40 \%$ of its length.

How to get a big force?

- Connect N actin filaments together in parallel:

$$
F_{\text {tot }}=\mathbf{N} \times \# \text { of parallel filaments }
$$

How to get a big motion/contraction?

- Connect M sarcomeres together in series:
$\Delta \mathrm{x}_{\text {tot }}=\mathrm{M} \times(\Delta \mathrm{x}$ of one sarcomere) Muscle contracts by $\sim 40 \%$ of its length.

How to get a big force?

- Connect N actin filaments together in parallel:
$F_{\text {tot }}=\mathbf{N} \times \#$ of parallel filaments
For typical striated muscle, $F_{\text {max }} \approx 30 \mathrm{~N}$ for each cm^{2} of muscle crosssectional area.

Today:

- Kinetic friction
- What force acting on a car produces its acceleration?

case (2): kinetic friction force \vec{f}_{k} ("sliding'friction)
- relative motion of surface in contact (sliding)
- Kinetic friction $f_{k} \sim$ independent of F, a, relative velocity of surface
- good model:

$$
\begin{aligned}
& \text { Gel: } \\
& f_{k}=\mu_{k} \cdot N \leftarrow \begin{array}{l}
\text { magnitude of } \\
\text { normal fore, } \\
\text { pressing }
\end{array} \\
& \text { coefficient of } \quad \begin{array}{l}
\text { Sunfactic friction }
\end{array} \quad \begin{array}{l}
\text { sugethe }
\end{array}
\end{aligned}
$$

in geneal: $\mu_{k}<\mu_{s}$

- friction force alluayp opposes relative motion, but can act opposite to $t 4$ clisection of motion or in direction of motion!

Model for friction force δ :

friction force f

Microscopic Origin of Friction: $\left.\begin{array}{l}\left(f_{s}\right)_{\text {max }}=\mu_{s} \tau \\ f_{k}=\mu_{M} \tau\end{array}\right\} \begin{aligned} & \text { inder. of } \\ & \text { oupace ared }\end{aligned}$

(a)

(b)

Same friction force!

(b)

Coefficients of Frictiona

	$\boldsymbol{\mu}_{\mathbf{s}}$	$\boldsymbol{\mu}_{\mathbf{k}}$
Steel on steel	0.74	0.57
Aluminum on steel	0.61	0.47
Copper on steel	0.53	0.36
Rubber on concrete	1.0	0.8
Wood on wood	$0.25-0.5$	0.2
Glass on glass	0.94	0.4
Waxed wood on wet snow	0.14	0.1
Waxed wood on dry snow	-	0.04
Metal on metal (lubricated)	0.15	0.06
Ice on ice	0.1	0.03
Teflon on Teflon	0.04	0.04
Synovial joints in humans	0.01	0.003

${ }^{\text {a }}$ All values are approximate.

$$
g \operatorname{sen} s a l: \mu_{s}>\mu_{4}
$$

A car accelerates on a level road. What force acting on the car produces its acceleration?

The coefficients of static and kinetic friction between tires and the road don't vary significantly with the mass of a car. How does the stopping distance Δx of a car with mass m compare with that of a car with mass 2 m ? (Assume the cars have the same initial speed.)

$$
\begin{aligned}
& \underset{x^{\leftarrow}}{\text { (2) }} \prod_{\substack{V_{0} \\
\text { initial speed }}} \\
& \begin{aligned}
w \text { II: } & \begin{aligned}
\sum F_{y} & =m a_{y}=0 \\
& =N-w=m y
\end{aligned} \\
\Rightarrow N & =w=m y \\
&
\end{aligned} \begin{array}{ll}
\Delta x(2 m) / \Delta x(m)=? \\
\text { A. } 1 / 4
\end{array} \\
& \text { (3) FPD: } \\
& \text { ss } \beta^{v} \\
& \longleftarrow \text { Car } \\
& \begin{aligned}
& \Rightarrow\left(a_{x}\right)_{\text {max }}=\frac{\left(f_{j}\right)_{\text {max }}}{m} \text { C. } 1 \\
&=\frac{\mu_{s} v}{m}=\frac{\mu_{s} m g}{m} \text { E. } 2 \\
& \hline
\end{aligned} \\
& \Rightarrow\left(a_{x}\right)_{\text {max }}=\mu_{s} g \text { index. of mass }_{\Rightarrow \Delta x \text { index. of mc. }}^{\Rightarrow D}
\end{aligned}
$$

What is the maximum acceleration a that F can produce and still have the two blocks move together?

T (2)

frictionless
N II: $\sum F_{7}=m_{2} a_{7}$

$$
\begin{aligned}
& \sum F_{x}=m_{2} a_{x}=m_{2} a=f_{s} \leq\left(f_{j}\right)_{\max } \\
& \Rightarrow m_{2}(a)_{\text {max }}=\left(f_{j}\right) m_{\max } \hat{N}=\mu_{j} N=\mu_{s} m_{2} g
\end{aligned}
$$

$$
\Rightarrow(a)_{\max }=\mu_{s} g
$$

$a_{\text {max }}=$?
A. g
N. $\mu_{\mathrm{s}} \mathrm{m}_{2} \mathrm{~g}$ unitt!
C. $\mu_{s}\left(m_{1}+m_{2}\right) g$
D. $\mu_{\mathrm{s}} \mathrm{g}$
E. Insufficient information
static friction force on m_{2} gensats accel of m_{2}

What is the minimum magnitude of $F_{\text {hand on } m}$
§ (2) required so that the block doesn't fall?

