Lecture 12

Recar

Recore

=? static function : fs = (fs)max = Ms N & normal force, plif-adjust coefficient of surface, pressing otalic ficient of surface, pressing static friction surfaces togethe Note: 1N1 is not necessarily equal to IW18 Examplei

As the applied force F is increased, how does the static friction force f_s vary? (Assume F is less than that needed to make the block move.) $\vec{a} = o \Rightarrow \vec{z} \vec{F} = o$ here $2f F > (f_s)$ ۲_s 1 N+ 1 N-Ν $f_j = F$ f_{s} f_{s} 0 0 0 0 1 N 0 1 N 1 N 0 0 1 N 0 F

Microscopic mechanism of muscle force production and contraction:

Some Numbers:

Sarcomere length:

fully extended:**2.3** μ mfully contracted:**1.0** μ m

Force per myosin head: ~ 5 pN = 5×10^{-12} N.

How to get a big motion/contraction?

• Connect M sarcomeres together *in series*:

 $\Delta x_{tot} = M \times (\Delta x \text{ of one sarcomere})$ Muscle contracts by ~40% of its length.

How to get a big motion/contraction?

• Connect M sarcomeres together *in series*:

 $\Delta x_{tot} = M \times (\Delta x \text{ of one sarcomere})$ Muscle contracts by ~40% of its length.

How to get a big force?

Connect N actin filaments together in parallel:

 $F_{tot} = N \times #$ of parallel filaments

How to get a big motion/contraction?

• Connect M sarcomeres together *in series*:

 $\Delta x_{tot} = M \times (\Delta x \text{ of one sarcomere})$ Muscle contracts by ~40% of its length.

How to get a big force?

Connect N actin filaments together in parallel:

F_{tot} = **N** × **#** of parallel filaments

For typical striated muscle,

 $F_{max} \approx 30$ N for each cm² of muscle cross-sectional area.

- Kinetic friction
- What force acting on a car produces its acceleration?

case 2: Rinetic friction force Fix ("sliding friction) - relative motion of surfaces in contact (sliding) - Kinchic friction fix a independent of F, a, relative velocity of surfaces - good model: magnitude of $f_{K} = \mu_{K} \cdot N^{\ell}$ normal fore, pring coefficient of surfaces togethe Rinch's friction in general: My C Ms - friction force al mays oppose relative motion, but can act opposite to ble direction of motion or in direction of motion!

Model for friction force J: tyou on object friction force f static friction: fs = From no relative motion Kinetic friction $S_{k} = M_{k} N$ object + 70 on < 1/5 in general: Ми

Microscopic Origin of Friction:

(SS)max=MSN Jinden. of SK = MKN Jourface area

Coefficients of Friction ^a		
	μs	μ _k
Steel on steel	0.74	0.57
Aluminum on steel	0.61	0.47
Copper on steel	0.53	0.36
Rubber on concrete	1.0	0.8
Wood on wood	0.25 - 0.5	0.2
Glass on glass	0.94	0.4
Waxed wood on wet snow	0.14	0.1
Waxed wood on dry snow	_	0.04
Metal on metal (lubricated)	0.15	0.06
Ice on ice	0.1	0.03
Teflon on Teflon	0.04	0.04
Synovial joints in humans	0.01	0.003

^a All values are approximate.

general: Ms > M4

A car accelerates on a level road. What force acting on the car produces its acceleration?

no relative motion Facting on car = main of road - tix surfaces Car in contact in direction of =) static friction) intenal force need force X The force of the engine on the wheels The static friction force of the tires on the road **C.** The static friction force of the road on the tires K The kinetic friction force of the tires on the road K The kinetic friction force of the road on the tires

The coefficients of static and kinetic friction between tires and the road don't vary significantly with the mass of a car.

How does the stopping distance Δx of a car with mass *m* compare with that of a car with mass 2m? (Assume the cars have the same initial speed.)

2 17	$NII: \Xi F_{y} = ma_{y} = 0$	$\Delta x (2m) / \Delta x (m) = ?$
× ····	$= N - W = m_{j}$ $= N = W = m_{j}$	A. 1/4
× Vo initial p (3) FBP:	$ZF_{x} = ma_{x} = -f_{s} - (f_{s})_{u}$	
5s NN	$=)(a_{x})_{max} = (J_{s})_{max} ($	C. 1
e Car	$= \underbrace{\mu_{s}}_{m} \underbrace$	E. 4
V w	mm	
		=) DX indep. of man.

What is the maximum acceleration a that F can
produce and still have the two blocks move together?

$$M = \frac{3}{x} \xrightarrow{\mu_s > 0} \xrightarrow{M} \xrightarrow{M_s > 0} \xrightarrow{M_s = m_s} \xrightarrow{m_{2,s}} \xrightarrow{\mu_s > 0} \xrightarrow{M} \xrightarrow{M_s = m_s} \xrightarrow{m_{2,s} = m_s} \xrightarrow{m_s} \xrightarrow{m_s} \xrightarrow{m_s = m_s} \xrightarrow{m_s} \xrightarrow{m_$$

What is the minimum magnitude of $F_{hand on m}$ required so that the block doesn't fall? (\mathbf{Z}) 3 FBD of m: 2 μ_{s}, μ_{k} $F_{\min} = ?$ Α. mg Β. μ_s mg F_{hand on m} m C. mg / μ_s a'=0 μ_k mg =) J P=0 mg / μ_k Fr=max=0=Fhad-N =) N = Fhand on man $\overline{z}F_{y} = ma_{y} = 0 = f_{s} - W = f_{s} - m_{f}$ -) mg = fs = (fs) max = Ms V = Ms · Fby hand Fmin = mg/N.