Recap

- **Forces in uniform circular motion:**
 \[\vec{F}_{\text{on object}} = m \vec{a}^2 \quad \text{with} \quad 1 \vec{a}^2 = \frac{v^2}{r} \]
 and \(\vec{F}_{\text{on object}} \) and \(\vec{a}^2 \) point to center of circle, \(\perp \) to path.

- **Kinetic Energy:** \(K = \frac{1}{2} m v^2 \)

- **Work:** energy transferred to or from an object by force.
 For a constant force: \(W = \vec{F} \cdot \vec{d} = F d \cos \phi = F_{\parallel} d = F d_{\parallel} \),
 "dot" product of \(\vec{F}_{\parallel} \) to \(\vec{d} \) component of \(\vec{d} \parallel \) to \(\vec{F} \).
Today:

• Work and Energy:
 – Work done by a single force
 – Work-kinetic energy theorem
 – Work done by gravity, friction…
A ball of mass \(m \) is swung at the end of the rope in a horizontal circle. Its speed \(v \) is constant and the length of the rope is \(L \). Note: \(v = \text{const} \Rightarrow J^2 = \text{const} \Rightarrow \text{no work done} \)

What work \(W \) is done by the tension \(T \) in the rope when the mass moves a small distance \(s \) along the circle?

\[W = ? \]

A. \(mg \, s \)
B. \(T \, s \)
C. \(T \, L \)
D. 0
Work done by a single, constant force on an object:

\[\vec{F} \] acts on \[\vec{d} \]

\(\vec{d} \): Displacement vector
\(\phi \): Angle between \(\vec{F} \) and \(\vec{d} \)

\[\vec{d} = \vec{r}_2 - \vec{r}_1 \]

Work \(W \) is given by:

\[W = \vec{F} \cdot \vec{d} \cos \phi = F_{\parallel \vec{d}} \cdot d = F \cdot d_{\parallel \vec{F}} \]

Note: if \(\phi = 90^\circ \), then \(W = 0 \) by force on object.
A 10 kg crate is pulled 10 m along a frictionless horizontal floor by a force $F_{\text{pull}} = 10 \text{ N}$ applied at an angle of 10° with respect to the horizontal, as shown. What is the net work done on the crate by all the forces that act on it?

$W_{\text{net}} = \ ?$

A. 100 $\cos 10^\circ$ J
B. 100 $\sin 10^\circ$ J
C. 1000 J + 100 $\sin 10^\circ$ J
D. 1000 J + 100 $\sin 10^\circ$ J

Solution:

1. **W = F d cos θ**

2. For F_{pull}:

 $W_{\text{pull}} = 10 \text{ N} \cdot 10 \text{ m} \cdot \cos 10^\circ = 100 \text{ J} \cdot \cos 10^\circ$

3. For N:

 $W_N = N d \cos 90^\circ = 0$

4. For weight W_w:

 $W_w = 0$

5. **Sum:** $W_{\text{net}} = 100 \text{ J} \cdot \cos 10^\circ + 0 + 0$

 - $W_{\text{net}} = 100 \cos 10^\circ \text{ J}$

 Circle A.
• Work done by a single constant force on an object

\[W_{\text{by force on object}} = F \cdot d \cos \phi = F_{\parallel} d = F d_{\parallel} \]

Mathematical shorthand:

\[W = \overrightarrow{F} \cdot \overrightarrow{d} \]

"dot" product of two vectors

\[= F d \cos \phi \]

\[\angle \text{between the two vectors} \]

Use this if you know components of vectors

\[= F_x d_x + F_y d_y \]

\[\text{Note: components can be < 0!} \]

Work for any coordinate system
• Work done by multiple forces (constant) acting on an object:

\[W_{\text{net}} = W_1 + W_2 + \ldots = F_1 \cdot d + F_2 \cdot d + \ldots \]

\[= (\sum \vec{F}) \cdot \vec{d} = \vec{F}_{\text{net}} \cdot \vec{d} = F_{\text{net}} \cdot d \cos \phi \]

[Diagram: \(\vec{F}_{\text{net}} \) and \(\vec{d} \) with angle \(\phi \).]
Work - Kinetic Energy Theorem:

- Work: Energy transferred to or from an object by force

- Kinetic energy: \(J_k = \frac{1}{2} m v^2 \)

\[\Delta J_k \text{ of object} = J_{k_f} - J_{k_i} = \text{Work net on object by all forces that act on the object while it moves from some initial to some final position} \]

\[\left(\frac{\text{change in kinetic energy of object}}{\text{energy of object}} \right) = \left(\frac{\text{net work done on object by forces}}{\text{on object by forces}} \right) = \Delta J_k \]

Note: \(\Delta J_k < 0 \) or \(\Delta J_k > 0 \) possible!
Check Work-Kinetic Energy theorem:

\[\Delta K = K_f - K_i = \frac{1}{2} m v_{f,x}^2 - \frac{1}{2} m v_{i,x}^2 \]

\[= W_{net} = W_N + W_{weight} + W_{pull} \]

\[= 0 \quad \text{here} \]

\[= \rightarrow F_{pull} \cdot \rightarrow d = F_{pull,x} d \]

\[\rightarrow d \parallel \text{along} \, x \]

Use NEW: \[\sum F_x = m a_x = F_{pull,x} \]

\[\Rightarrow \frac{1}{2} m (v_{f,x}^2 - v_{i,x}^2) = F_{pull,x} d = m a_x d \]

\[\Rightarrow v_{f,x}^2 - v_{i,x}^2 = 2 a_x d = 2 a_x \Delta x \]

\[\int \text{nothing new...} \]

\[\Rightarrow \text{same as Newton's laws, but work/kinetic} \]

\[\text{helps to solve some problems much easier than} \]

\[\text{Newton's Laws!} \]
A car of mass m traveling at a speed v_i is braked to a stop by a constant force F.

What is the stopping distance d of the car?

(Use energy/work concepts to solve, not NII.)

\[d = \frac{mv_i^2}{2F} \]

A. $\frac{F}{v_i}$
B. $\frac{mv_i}{F}$
C. $\frac{mv_i^2}{2F}$
D. $\frac{mv_i^2}{F}$
E. $\frac{2F}{mv_i^2}$
Work done by specific forces:

1. Work done by gravity:
 - \(\uparrow + Y < \text{important?}\)
 - \(\Delta Y < 0\)
 - \(W = m\vec{g}\)
 - \(-m g \Delta y < 0 \text{ for down motion}\)
 - \(W_{\text{by gravity}} = F \cdot d \cos \phi = F d\)
 - \(-m g (y_f - y_i)\)
 - \(-m g (\text{vertical displacement})\)
 - \(\uparrow \text{ for } +Y \text{ up!}\)

\(\downarrow + Y > 0\)
\(\downarrow + Y < 0\)