Recap:
Lecture 17

- Kinetic en argo: $I_{K}=\frac{1}{2} m v^{2}$
- Work: $\left.W_{\text {on }} o_{j}=\vec{F} \cdot \vec{d}=F d \cos \phi\right\}$ for a constant force

$$
\text { Won } \left.o_{j}=\int_{x_{i}}^{x_{s}} F(x) d x=\begin{array}{l}
\text { area "under" } \\
F-x \text { graph }
\end{array}\right\} \begin{aligned}
& 1-0 \text { case for a } \\
& \text { variable force }
\end{aligned}
$$

 need to in cluck all forces!

- Work by gravity: $W_{b y} g$ on $o b_{j}=-m g(\underbrace{}_{i f}+y \uparrow$ un
- Work by a spring: $W_{b y}$ spring $=-\frac{1}{2} k(\underbrace{x_{f}^{2}-x_{i}^{2}}_{\neq \Delta x^{2}})$
- Power rate at which work is done \quad

$$
\begin{aligned}
& \vec{P}=\text { average power }=\frac{w}{D t} \Leftrightarrow W_{o n} o b_{j}=\bar{P} \Delta t \\
& P=\text { inst. power }=\frac{d w}{d t}=\text { slope of } w-t \text { graph } \\
& {[P]=y / s=W a t t=W}
\end{aligned}
$$

Power and Energy in Cycling

Assume $P_{\text {cyclist }} \approx$ Drag force \times velocity ($\mathrm{P}=\mathrm{Dv}$)
$\therefore \mathrm{P}_{\text {cyclist }}=1 / 2 C \rho A v^{2} \times v=1 / 2 C \rho A \mathbf{v}^{3}$

- Assume C~0.4, $\quad r=1.2 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~A} \sim 0.7 \mathrm{~m}^{2}$
- Assume human body $\sim 25 \%$ efficient in converting food energy into mechanical energy.
- $1 \mathrm{Cal}=4.2 \mathrm{~J}, 1$ food Calorie $=1 \mathrm{kCal}=4,200 \mathrm{~J}$

Prof. Liepe:

$v \sim 8 \mathrm{~m} / \mathrm{s}(17 \mathrm{mi} / \mathrm{h}) \quad P \sim 86 \mathrm{~W}(\sim 0.12 \mathrm{hp})$
Burns ~ $344 \mathrm{~W}, 1.24 \mathrm{MJ} /$ hour, $295 \mathrm{kCaI} /$ hour
Professional distance cyclist:
v ~ $14 \mathrm{~m} / \mathrm{s}$ ($\sim 30 \mathrm{mi} / \mathrm{h}$) $P \sim 460 \mathrm{~W}(\sim 0.6 \mathrm{hp})$
Burns ~1.8 kW, 6.6 MJ/hour, 1580 kCal/hour
Professional sprint cyclist: $v \sim 20 \mathrm{~m} / \mathrm{s}(\sim 45 \mathrm{mi} / \mathrm{h}) \quad P \sim 1340 \mathrm{~W}(\sim 1.8 \mathrm{hp})$
Burns ~ $5.4 \mathrm{~kW}, 19 \mathrm{MJ} /$ hour, $4600 \mathrm{kCal} /$ hour

Average daily food energy intake for Tour de France Cyclists:

~10,000 kCal/ day

(~7 lb of uncooked pasta)

Today:

- Conservative forces
- Potential energy
- Mechanical energy
- Loop-the-loop

Conservative Force:
 object under the influence of a farce F
\Rightarrow for a conservative force: $W_{1}=W_{2}$ always
\rightarrow work dom between A and B on object is path - in der indent!
\rightarrow Net work done on object byaconstrative fore when it goes arocend a closed patti $=0\left(w_{1}-w_{2}=0\right)$
\rightarrow Key: don't med to car about path between A and B!
\Rightarrow for a nos -con!. face: Work dome dos depend on path!

Which of the following forces are conservative forces?
A. \checkmark Gravity $W_{j} \propto \Delta y \Rightarrow$ cons. force
B. \checkmark Spring force $W_{s p} \propto\left(x_{f}^{2}-x_{i}^{2}\right) \Rightarrow$ com. farce

Friction W_{f} derents on pat $\Leftrightarrow \rightarrow$ neen-conl fare
D. two of the above
E. three of the above

Examples:

- Cons.forcs: Gravity, spring force, electrostatic force
- Non -cons. force: Friction, applied force, tension,... \Rightarrow work depends on path

Potential Energy U :
$U=$ Energy associated wits the configuration of a system of objects that exerts fores On one another

- only defined for conservative force
- Energy which is a function of position

Define as:

$$
\begin{aligned}
& \left(\begin{array}{l}
\text { chang in } \\
\text { polutial enemy } \\
\text { of obicet }
\end{array}\right)=-\binom{\text { work done by the }{ }_{i}}{\text { cons. fore on object }}
\end{aligned}
$$

Key: Warns depends on initel and final positions of the object not on path!

$$
\begin{aligned}
& \Rightarrow \text { for grau.t cons force!? }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \Delta U_{g}=+m g\left(y_{f}-y_{i}\right) \\
& \Rightarrow \Delta U_{g}>0 \text { if } Y_{f}>Y_{i} \text {, ide objectrounen } \\
& \Rightarrow \text { Choice of } U_{g}=0 \text { in arbitrous: } \Delta U_{g} \leftrightarrow W_{g} \leftrightarrow \Delta x \\
& \text { choose: } U_{g}=0 \text { at } y=0 \\
& \Rightarrow U g(y)=\operatorname{mgy} \text { for Try un }
\end{aligned}
$$

\Rightarrow for ideal oping force: $F_{x_{7} 7 \text { pi ,i) }}=-k x$

$$
\begin{aligned}
\Delta U_{s p} & =-W_{b, ~ s p p_{i j}}=-\int_{x_{i}}^{x_{s}}(-k x) d x \\
& \Rightarrow \Delta U_{s p}=+\frac{1}{2} k\left(x_{f}^{2}-x_{i}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow c \text { choose } U_{s p}=0 \text { at } x=0 \text { Cat relaxed position, } \\
& \Rightarrow \text { when } F_{s p}=0
\end{aligned}
$$

$$
\Rightarrow U_{s_{p}}(x)=+\frac{1}{2} k x^{2}
$$

2 Cases:

- Case I: The only fares that do walk on objet are conservative.

$$
\begin{aligned}
& \Rightarrow \text { work-ninctic enesg theorem: } \Delta J P_{\text {ali }}=W_{b,} \text { cont four } \\
& \Rightarrow \quad \Delta U=-W_{b, \text { constas }} \Rightarrow \Delta{ }^{2} \\
& \left.\Rightarrow \Delta \mathcal{Y}_{o b_{j}}=-\Delta U_{o b_{j}}\right\} \text { for case } I \text { only! }
\end{aligned}
$$

\Rightarrow Define Mechanical Enesy- of object

$$
\begin{aligned}
& E_{\text {meas, ob } j}=I \gamma_{o s_{j}}+U_{o b j} \\
& \Rightarrow \text { at point 1: } E_{1}=X_{1}+U_{1} \begin{aligned}
\Delta E & =E_{2}-E_{1}=\left(\mathcal{X}_{2}-X_{1}\right)+\left(U_{2}-u_{1}\right) \\
& =\Delta X_{1}+\Delta U_{1}
\end{aligned} \\
& \text { at point 2: } \left.E_{2}=X_{2}+U_{2}\right\} \quad=\Delta X_{+}+\Delta U \\
& =W_{\text {cons }}-W_{\text {con } 1}=0
\end{aligned}
$$

$\Rightarrow E_{\text {meas. } 2}=E_{\text {mac }, 1}=J r_{o s_{j}}+U_{o b_{j}}=$ canst $\left(\Delta E_{\text {mack }}=O\right)$: Mechanical energy is consered constant) through ant motion if there is no work dome by non -cons. force!
Examples: If only gratis dos world on object:

$$
E_{\text {med }}=J_{\text {obj }}+U_{\text {obj }}=\text { cost }=\frac{1}{2} 2 v^{2}+m g y
$$

- simple pendulum: $\stackrel{\text { erie }}{\longrightarrow} \vec{T}$ dos nu war!

$$
\text { same max height } \rightarrow \text { SK=O at max.haj it }
$$

- slop ping track (mitch ont friction)

CaseII: Work is done by conser. and now-cons force (e.g. friction, applied forcs)
alway true!

$$
\begin{aligned}
& \Delta \mathcal{R}_{\Delta b_{j}}=W_{\text {nt }}=\sum W_{i} \\
& \} \text { alwoys true }
\end{aligned}
$$

$$
\begin{aligned}
& =W_{\text {non-cons. facs }}+W_{\text {coms. foces }} \\
& =W_{n o n-c o n} \text { fores }+\left(-\Delta U_{S}-\Delta U_{s p}\right) \\
& \Rightarrow \Delta U_{0} s_{j}+\Delta U_{g}+\Delta U_{s_{p}}=W_{\text {non }} \text { coms. forcs } \\
& \Rightarrow \Delta E_{\text {mac }}=\Delta J P_{0 b_{j}}+\Delta U_{o b_{j}}=W_{\text {non-coms }} \text { fores }
\end{aligned}
$$

A block of mass \boldsymbol{m} is released from the top of the frictionless track shown.
What is its speed v at the top of the loop-the-loop?

