- $\left.\Delta K_{o b_{j}}=W_{\text {net on } o b_{j}}=w_{1}+w_{2}+\ldots\right\}$ al ways true
- Potential Energy: $\Delta U=U_{f}-U_{i}=-W_{\text {cons. force }}=-\int_{x_{i}}^{x_{f}} F(x) d x$ defined for conservative forces only (work is path independent)
- gravity: $U_{g}=m g y$ for $p+y$ up spring: $U_{s p}(x)=\frac{1}{2} k x^{2}$ (choose $U_{y}=0$ at $y=0$) (choose U Usp $=0$ at $x=0$)
- mechanical energy $E_{\text {mech }}=I_{0 b_{j}}+U_{0 G_{j}}$
- if only cons. forces do work on object: $E_{\text {mech, }}=E_{\text {mech, }}=$ cost
- if also non-cons. forces do work: $\Delta E_{\text {mech }}=W_{s y}$ all non cont.

Example: without friction: all wort done by

Today:

- Potential energy diagrams
- Stable and unstable equilibrium
- Oscillations, simple harmonic motion

A mass \boldsymbol{m} is connected to a rigid massless rod of length L. The mass is released from the vertical as shown.

\Rightarrow all wank done by cons. force here (gravity)

$$
\begin{aligned}
& \Rightarrow E_{\text {mes }} i=E_{\text {mex }}, f \\
& E_{i}=J T_{i}+U_{i}=E_{f}=J r_{f}+U_{f} \\
& \\
& 0+\operatorname{mg} 2 L=\frac{1}{2} m v_{s}^{2}+0 \\
& \quad \Rightarrow V_{f}=\sqrt{4 g L}
\end{aligned}
$$

A block, initially at rest, slides down a frictionless slide. At the bottom of the slide the block comes to a stop in a distance $\mathbf{d = 1 m}$ \uparrow ty on a surface with friction ($\mu_{\mathrm{k}}=0.5$). $U_{i}=\operatorname{mogh} h_{i n i t i a l} v_{i=0}$ What is the height h of the slide?

$$
\begin{aligned}
\pi & \forall P_{i}=0
\end{aligned}
$$

$$
\begin{aligned}
& \Delta E_{\text {med }}=W_{\text {non }} d=1 \mathrm{~m}_{\text {non }} \cdot \text { five }=-f_{k} d=-\mu_{k} N d=-\mu_{\text {n no }} d \\
& \left.\begin{array}{rl}
E_{\text {mics } i}=J R_{i}+U_{i}=0+m g h \\
E_{\text {mech }}, f & =J R_{f}+U_{f}=0+0
\end{array}\right\} \begin{aligned}
\Delta E_{\text {tee }} & =E_{f}-E_{i} \\
& =-\operatorname{mgh}=
\end{aligned} \\
& \Rightarrow h=\mu_{k} d=0.5 .1 m_{0}
\end{aligned}
$$

A block of mass m is dropped from a height h onto a spring with spring constant k, as shown.

If the spring compresses a maximum distance $\Delta \boldsymbol{y}$, \uparrow^{4} from what height h was the block dropped?
only fores that do work:

$$
\begin{aligned}
& y_{i}=h _m \quad y_{i}=0 \quad \text { grant, 刀prio } \Rightarrow \text { all cons. } h=\text { ? } \\
& u_{i, g}=\operatorname{mogh} \quad x_{i}=0 \Rightarrow E_{\text {meas }}=\text { cons } \\
& \text { A. } k \Delta y / m g \\
& \text { B. } k(\Delta y)^{2} / 2 m g \\
& \text { C. } k(\Delta y)^{2} / 2 m g-\Delta y \\
& \text { D. Not sure } \\
& y_{s}=-\Delta y \Rightarrow U_{f, g}=m g(-\Delta y) \\
& U_{s, s}=\frac{1}{2} k(\Delta y)^{2}
\end{aligned}
$$

Equilibriom points: $F\left(x_{\text {equ }}\right)=0$
\Rightarrow object placed at rest at these positions
will remain at rost
2 Jrinch:
(1) Stable equilibrion:

when displaced by some Δx from equilibricm, $F\left(x_{\text {egn }}+\Delta x\right)$ points towad $x_{\text {egn. }}$.

$$
\Rightarrow F\left(x_{\text {eq4 }}\right)=0
$$

and $\left.\frac{d F}{d x}\right|_{x=x_{\text {ppa }}}<0$ at equilibicien \Rightarrow curvatue $U(x)>0$ at $X_{\text {egn. }}$.
$u_{(x)}$ (2) Unotable equilibrium:

when displacel some Δx from equilibriom, $F\left(x_{\text {gon }}+\Delta x\right)$ point away from $x_{\text {equ }}$.

$$
\Rightarrow F\left(x_{\text {equ }}\right)=0
$$

and $\left.\frac{d F}{d x}\right|_{x=x_{\text {egn }}}>0$

$$
\Rightarrow \text { curvatured } U(x)<0 \text { at }
$$ Xegu.

$$
\begin{aligned}
\left.\Rightarrow \text { If } E_{\text {mech }}=J\right\}+U \text { is conserved } \Rightarrow & E_{\text {mac }}=\text { comox } \\
& \text { for all } x! \\
\Rightarrow J(x) & =E_{\text {mac }}-U(x)
\end{aligned}
$$

$$
\begin{aligned}
\text { point: } J Y(x) & =E_{\text {mac }}<-U(x) \\
& =0 \\
& \Rightarrow V=0
\end{aligned}
$$

for E mel, 1: 3 turning point 1 bound state

Consider the potential energy curve $U(x)$ shown below:

Stable equilibrium?
Unstable equilibrium?

1. $\mathrm{E}=0 \mathrm{~J}$: Turning points?
2. $\mathrm{E}=1 \mathrm{~J}:$ Turning points?

Oscillations:

- any repetitive motion
- SHM: Simple Harmonic motion三 motion that is sinusoidal in time

$$
x(t)=x_{\max } \cos (\omega t+\phi)
$$

or $y(t)=y$ max $\cos (\omega t+\phi)$ or $\theta(t)=\underbrace{\theta \text { max }}_{\text {peak amplitude time }} \cos \left(\omega_{\lambda}^{t}+\phi\right)$ of motion
2. $X_{\text {max }}$: "peak to peak "amplitude (cos goes from-1 to +1)

