Recap: Solving for Equilibrium

- Torque $=\tau=F r \sin \phi=F_{\perp} r=F r_{\perp}$
- Mechanical advantage: $M A=\frac{\text { Output force }}{\text { Input farce }}$
- Equilibrium:
$\frac{\text { Equilibrium }}{2-2}$

$$
\sum \vec{F}_{e x t}=0 \quad \sum \bar{c}_{\text {about any }}=0
$$

- forces act at specific points \Rightarrow scour on FBD!
- weight $=\operatorname{mg}$ acts through center of mans of object
- τ has sign! \Rightarrow Define positive direction!
- Can calculate $\sum \tau$ about any axis
\Rightarrow place axis at point where unknown force act

Today:

- Elastic response of materials
- The Titanic
- Proportions of Animals
- Temperature and thermal equilibrium

Elastic Mesponse of Materiab:

- Spring

- Gemeral Solid Materal

Under temion lcompranion

Hook's "Law"

$$
\begin{aligned}
|F| & =K \Delta L \\
\Rightarrow \Delta L & =\frac{1}{\pi}|F|
\end{aligned}
$$

K derens on moteral, size, share of opring

$$
\begin{aligned}
& \Rightarrow \underbrace{\frac{F}{4}}_{\text {"otres" }} \propto \frac{\Delta L}{A_{L}} \text { paralitri } \\
& \text { parallel } \\
& {\left[\frac{E}{A}\right]=\frac{x}{m^{2}} \text { (dimensionlan) }}
\end{aligned}
$$

\Rightarrow Elasticity: $\quad \frac{F}{A}=E \frac{\Delta L}{L}$

$$
\text { stress }=E \text { strain }
$$

$E=$ Young', Modulus

- bulk material proper
- Varis aloft between materials
- rubber tube: small E, steal: lays E
$-[E]=\frac{[F]}{[A]}=\frac{N}{n^{2}}$
- often similar for tension and compression

A Nylon rope used by mountaineers has a length of 50 \mathbf{m} and cross-sectional area of $\mathbf{0 . 0 0 4} \mathbf{~ m}^{2}$. When an 80 $\mathbf{k g}$ climber hangs from the rope it extends by $\mathbf{1 ~ m}$.

What is the stress in the rope?

A Nylon rope used by mountaineers has a length of 50 \mathbf{m} and cross-sectional area of $\mathbf{0 . 0 0 4} \mathbf{~ m}^{2}$. When an $\mathbf{8 0}$ $\mathbf{k g}$ climber hangs from the rope it extends by $\mathbf{1} \mathbf{~ m}$.

What is the Young's modulus E of the Nylon?

$$
\begin{aligned}
& \frac{F}{A}=E \frac{\Delta L}{L} \\
& \begin{aligned}
\Rightarrow E=\frac{\partial \operatorname{tres}}{\text { strain }} & =\frac{F / A}{\Delta L / L} \\
& =\frac{200,000 \mathrm{~N} / \mathrm{m}^{2}}{120 / 50 \mathrm{~m}} \\
& =10,009000 \mathrm{~N} / \mathrm{ma}^{2} \\
& =10^{7 \mathrm{~N}} / \mathrm{me}
\end{aligned}
\end{aligned}
$$

$E \approx$?
A. $200 \mathrm{~N} / \mathrm{m}^{2}$
B. $200,000 \mathrm{~N} / \mathrm{m}^{2}$
C. $1,000,000 \mathrm{~N} / \mathrm{m}^{2}$
D. $10,000,000 \mathrm{~N} / \mathrm{m}^{2}$

- For small strain ($\frac{\Delta L}{L}$) solid material behove elastically:: return to origins length when stere is removed.
- For large $\left(\frac{\Delta L}{L}\right)$

strain a stores
(permanent deformation regime): when oteresis removed, object is perncenerty elongated $\left(\frac{F}{A}\right)_{\text {max }}=$ ultimate s tern th
$=$ maximum stress that
Can be applied
(often different
fortension and
Compression)

The Pyramids at Giza Constructed: 2650-2490 BC

Cathedrale de Notre-Dame-de-Paris

Constructed: 1163-1345 AD

San Francisco de Asis, Taos, New Mexico

 Constructed: 1772-1816

Monadnock Building, Chicago Constructed: 1893

The 627 ft tall "Turning Torso", an apartment complex in Malmö, Sweden, designed by Spanish architect Santiago Calatrava.

- Detailed behavior depends on material

Glas-brittle
stress

Gold- ductile
F/AT deforms plastically to large strains
little aron in strain if stress is removed
$\Delta L / L$

TITANIC

Weakened Rivets on Titanic's Hull

0ne theory on the sinking of the Titanic focuses on the wrought-iron rivets that held the ship together. Impact from the iceberg didn't slice a gash in its side but may have popped the structurally weak rivets, "unzipping" hull-plate seams.

WHAT IS KNOWN ABOUT THE RECOVERED RIVETS

High slag content and changes in the direction of the slag grain may be signs that the iron was weak.

Slag is a byproduct in the iron-making process. Wrought iron needs a small percentage of slag to help strengthen it; too much slag can make the iron weak and brittle.

A cross-section of the rivet shows the slag, which should run lengthwise along the rivet, makes a 90 -degree turn at one end-a potential weak spot.

HOW THE RIVETS MAY HAVE CONTRIBUTED TO DISASTER

1. The rivets were used to seal the hull plates together, with the hammered end on the exterior.

2. Pressure from the iceberg collision may have caused the rivets to pop along some hull plates, causing the seams to open.

3. The total area open to the sea may have been no bigger than a closet door, through which 34,000 tons of water seeped.
[^0]The minimum cross-sectional area of the femur of a human adult is $\mathbf{6 \times 1 0 ^ { - 4 } \mathbf { m } ^ { \mathbf { 2 } } \text { . The ultimate strength of bone } { } ^ { \text { a } } \text { . }}$ under compression is $\mathbf{1 7} \times \mathbf{1 0}^{\mathbf{7}} \mathbf{N ~ m}^{\mathbf{2}}$.

What is the maximum compressional force $F_{\text {max }}$ that can be applied (e.g., during a fall) before the bone breaks?

$$
\begin{aligned}
& \text { ultimate strength }=\left(\frac{F}{4}\right)_{\text {max }} \\
& \\
& =\begin{aligned}
F_{\text {max }} & =(U .5 \cdot 1 \cdot A \\
& =17 \cdot 10^{7} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \cdot 6 \cdot 10^{-4} \mathrm{~m}^{2} \\
& =100000 \mathrm{~N} \\
& =\text { weight of } 10 \text { tans }
\end{aligned}
\end{aligned}
$$

$F_{\text {max }} \approx$?
A. 1000 N
B. $100,000 \mathrm{~N}$
C. $3 \times 10^{11} \mathrm{~N}$
D. None of the above

The minimum cross-sectional area of the femur of a human adult is $\mathbf{6 \times 1 0 ^ { - 4 }} \mathbf{m}^{\mathbf{2}}$. The ultimate strength of bone under compression is $\mathbf{1 7} \times \mathbf{1 0}^{\mathbf{7}} \mathbf{N ~ m}^{\mathbf{- 2}}$, and its Young's modulus E is $9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{-2}$.
$\Delta L / L=2$
What is the strain at which fracture occurs?
(Assume that the stress-strain relation is linear up to when

$$
\begin{aligned}
& \frac{F}{A}=E \frac{\Delta L}{L} \quad \text { fracture occurs.) } \\
& \Rightarrow\left(\frac{\Delta L}{L}\right)_{\text {mox }}^{L}=\frac{(F / A)_{\text {mox }}}{E}=\frac{\text { uttimationtraytit }}{E} \\
& =\frac{17 \cdot 10^{7} \mathrm{~N} / \mathrm{m}^{2}}{\mathrm{~g} \cdot 10^{9} \mathrm{~N} / \mathrm{m}^{2}}=0.02=2 \% \\
& \text { A. } 0.01 \\
& \text { B. } 0.02 \\
& \text { C. } 0.04 \\
& \text { D. } 50 \\
& \text { E. } 100
\end{aligned}
$$

- other forms of deformation:

Bending

Proportions of Animals

Geometric Similarity:

Individuals of the same species usually have the same shape. Larger individuals are just magnified versions of smaller individuals.

E.g., Regal Horned Lizards:

Geometric Similarity:

\Rightarrow characterized by a single length scale ℓ

- length, diameter of limbs $\propto \ell$
- bone, muscle x-sectional area A $\propto \ell^{2}$
- mass m
$\propto \ell^{3}$
- muscle strength $\propto A$ $\propto \ell^{2}$

$\mathrm{W}_{\mathrm{T}}=$ world record weight lifted

log (body weight W)

Geometric Similarity:

$\mathrm{W}_{\mathrm{T}} \propto$ strength $\propto \ell^{2}$
$\mathrm{W} \propto$ mass $\propto \ell^{3}$

$$
\Rightarrow \mathbf{W}_{\mathbf{T}} \propto \mathbf{W}^{2 / 3}
$$

Elastic Similarity:

The shapes of individuals of different species are characterized by two length scales:

- long bone and muscle length ℓ
- bone and muscle diameter d

Animals of increasing size must be designed so that the elastic bending of their limbs during, e.g., running, does not cause the limbs to break.

For no increase in bone breakage (same $\Delta \mathrm{y} / \mathrm{L}$), need $\ell^{3} \propto d^{2} \Longleftarrow\left\{\frac{F}{A}=B \frac{\Delta y}{L}=\operatorname{same} \alpha \frac{e^{3}}{d^{2}}\right.$
\Rightarrow limb diameter $d \propto \operatorname{limb}$ length $\ell^{3 / 2}$
\therefore Larger species tend to have proportionately thicker limbs.

Theropod Dinosaurs:

Ornithomimid $\mathrm{m}=165 \mathrm{~kg}$ magnified $2.7 \times$

T. Rex $\mathrm{m}=6000 \mathrm{~kg}$

Thermodynamis and Heat：
－Temperatur：measur of thinteral en eyy from mostion of atoms of an olject

$$
\begin{aligned}
& T\left({ }^{\circ} \mathrm{C}\right)=T(\%)-273.15^{\circ} \\
& \text { 「"Jelun" } \\
& T\left({ }^{\circ} \mathrm{F}\right)=\left(\frac{9}{5}\right) T\left({ }^{\circ} \mathrm{C}\right)+32^{\circ} \Rightarrow 32{ }^{\circ} \mathrm{F}=0^{\circ} \mathrm{C}
\end{aligned}
$$

Loue limit：$T=0 \mathrm{KelLin}=-273.15^{\circ} \mathrm{C}$
－The mal equilibrime 困回
－terpeatus of objects same
－no net heat flow betwen objects

[^0]: SOURCE: Society of Naval Architects and Marine Engineers, Dr. Timothy Foecke

