Lecture 31 Recap: Heat Transfer Mechanisms:

1) Conduction :

2 Convection:

 $P = \mathcal{K} \stackrel{A}{=} (T_{H} - T_{c})$ - <u>mo</u> transfer of mans! - R-value = 4/ JK

- heat transfer by motion of worm fluid to colder region - usually driven by buoyancy ("convection rolls") <u>cinkelin</u>! (3) Thermal Radiation: $P_{net} = O \in A_{obj} \left(T_{obj} - T_{env} \right)$ $O = 5.67 \cdot 10^{-8} W \qquad \text{lmissivity} \qquad m^2 44 \qquad O \rightarrow 1$

0-) | scuface property

Today:

- Heat and work
- Heat engines
- Refrigerators, heat pumps
- The "drinking bird": How does it work???

What is the typical efficiency of a car petrol engine?

Efficiency $\varepsilon = (work done) / (total energy used)$

2 = 3
A. ~15 %
B. ~25 %
C. ~35 %
D. ~45 %
E. >=55%

-> Heat and Work:

Sofar: Conservation of mechanical energy Emergy Emech = Jl + U = const, if no work is done by non - cons. forces

ND Emech = Won system by non - cons. forces

only considered <u>macroscopic</u> (external) Inlegies of the object (from position, motion)

Nou: Internal energy_

Applications (): Heat Engine - takes heat energy QH from a high T reservoir, Converts some of this energy to useful work W and exhaust the set of the heat energy Qc to a low I reservoir. - assume steady state operation: Engine has "warmed up", i.e. all of its parts have reached steady T's 14 1 ensine VQH "syste" Qc -> W - engine operats in cycles: after each cycle, enjine returns to the same state => no net change in QN, Q, W: energis in one cycle of Eint afkreach full heat ensine Cycle ?

for leyele:
$$\Delta E_{int:in} = 0 = (IQ_H | - IQ_c |) - W_{by} engine
in one cycle
=? $W = IQ_H | - IQ_c |$ 3 pr cycle of
heat engine
Example: Stirling Engine: (closed air chambe)
=? converb part of thermal energy QH into
work
=? air expands
? deal gos law: $PV = NKT$
=? take QH from TH
=? work W done
 $N = H of modeculs$ (2) cool air in air chambe (by cold work)
 $K = Boltomera constant$ =? "exhaust" Qc to Tc
=? air contracts$$

Define The mal Efficiency: E

$$E = \frac{\text{Use ful energy output}}{\text{energy we pay for}}$$

$$= \int \frac{\int \text{output}}{\int \frac{\partial \text{energy we pay for}}{\partial \text{energy we pay for}}}$$

$$= \int \frac{\int WI}{\int \frac{\partial \text{energy}}{\partial \text{H}}} = \frac{\int \frac{\partial \text{energy}}{\partial \text{H}}}{\int \frac{\partial \text{energy}}{\partial \text{H}}} = I - \int \frac{\partial \text{energy}}{\partial \text{H}}$$

$$= \int \text{want} \int \frac{\partial \text{energy}}{\partial \text{H}} \int \text{small for big E}$$

$$= \partial \text{energy} = 0 \text{ (i.e. } W = \partial \text{H}) \rightarrow E = I \text{ would be mice...}$$

Example: Auto Engine

 \Rightarrow Carnot efficiency = 1 - 573/1623 = 0.65 (65 %)

- But real engine: ε ~ 25 % only!
- Why?

To get Carnot efficiency, you need:

- No friction
- Add and remove heat at constant gas temperature
 - \Rightarrow Must run cycle very slowly \Rightarrow low power engine

But: car need lots of power!

 \Rightarrow efficiency will be low

Application (2): Refrigerators and Heat Pumps: - transfer heat energy, using input work, from Ion Te to high TH $\gamma - |\mathcal{Q}_{H}| = |\mathcal{Q}_{c}| + |\mathcal{W}|$ 1 14 - Coefficient of Performance K: K = Useful output energy me pay for Refrigerator: $k = \frac{10cl}{10cl} = \frac{10cl}{10cl} \leq K_{mex}$ 1W1 1Q41-1Q21 maximum possible le fer refrigerator: Comot Kmex= Te J-count k TH-Te J-ideal promance $\left| \begin{array}{c} Q_{c} \\ Q_{14} \end{array} \right| = \frac{I_{c}}{T_{14}}$ in Kelvia ?

Example: Refrigerator

- $T_{H} = 21^{\circ}C = 294 \text{ K}$
- $T_c = 4^{\circ}C = 277 \text{ K}$

⇒ k_{max} = (useful output) / (energy we pay for) = 277 / (294-277) = 16 >> 1

Example: Heat Pump

 $\Rightarrow k_{max} = (useful output) / (energy we pay for)$ $= |Q_c| / |W| \text{ if operated as AC in summer}$

A heat pump is used to heat a building during the winter. The outside temperature is **0°C** and the inside temperature **20°C**.

What is the maximum possible coefficient of performance?

Heat pump during winte: want,			
K= useful output _ 10H1 heat	K _{max} = ?		
energy we pay for IWI	A. 1/20		
$=)K = \frac{ Q_{H} }{ Q_{H} }$ to ran heat purp	B. 1		
$1Q_H I - IQ_C I$	C. 13.65		
=) Comot: L'ast pomille) QL] = The	D.) 14.65		
Q_{H} T_{H} T_{H} T_{H}/T_{c}	E. 20		
$= \int W \max = \frac{1}{ Q_{i+1} } = $	+ = (27)+20)4 = 1467		
$ Q_{c} = \overline{T_{c}} = T_{H}$	-Te 204		

Heat engine: The "Drinking Bird" water evaporates from wet head =) takes away latent heat =) Cooling =) lover vapour prissure in head Ether or freon Warm (room air) Web head ZTbecoms ether runs vapour present ether evaporates back into belly. 70 as wajht difference rapidly at room unbalance in of ether in pushes ether temperature Vapour presure head becomes up the tube vonishs sufficient =) bird stands =) (or 3 balon le

straight agam ...