Recap: Vector
Lecture 6

- have magnitude + direction: $\vec{r}, \vec{v}, \vec{a}, \vec{F}, \ldots$
- Specifying vectors:

(1) by magnitude A and angle θ
(2) by components A_{x}, A_{y}

$$
\begin{gathered}
A_{x}=A \cos \theta \\
A_{y}=A \sin \theta \\
\vec{A}=A_{x} \vec{l}+A_{y} \overrightarrow{f_{k}} \text { vent }
\end{gathered}
$$

(1) "tail to tip", then "tail to tip"
(2) by component:

$$
\begin{aligned}
\vec{c}=\vec{A}+\vec{B} & =\left(A_{x}+B_{x}\right) \vec{c} \\
& +\left(A_{y}+B_{y}\right) \vec{\jmath}
\end{aligned}
$$

Never mix x and y components!

Three trajectories for a thrown ball are shown below.
Which trajectory has the longest time of flight?

Today:

- Motion in a plane (2-D motion)
- Position $\overrightarrow{\mathrm{r}(\mathrm{t})}$, velocity $\overrightarrow{\mathrm{v}(\mathrm{t})}$, acceleration $\overrightarrow{\mathrm{a}(\mathrm{t})}$
- Projectile motion

direction of \vec{v} points along path always! (tangent to path)
- average velocity: $\vec{V}_{\text {avg }}=\frac{\overrightarrow{\text { displacement }}}{\Delta t}=\frac{\Delta \vec{r}}{\Delta t}=\frac{\vec{r}_{2}-\overrightarrow{r_{1}}}{t_{2}-t_{1}}$
- inst velocity: $\vec{v}(t)-\frac{d \vec{r}}{d t}=d x^{k} \rightarrow$ slope of $x-t t_{2}-t$
- inst. velocity; $\overrightarrow{\vec{v}(t)}=\frac{d \vec{r}}{d t}=\frac{d x^{k}}{d t} \vec{l}+\frac{d y}{d t} \vec{y}$
, slope of $>$ goon

$$
=V_{x} \iota^{-}+V_{y} \vec{j}
$$

The direction of $\vec{V}^{\prime}(t)$ is tangent to the path at $\vec{v}(r)$.

- average acceleration: $\vec{a}_{\text {arg }}=\frac{\Delta \vec{V}}{\Delta t}=\frac{\vec{v}_{2}-\vec{v}_{1}}{t_{2}-t_{1}}$
- inst. acceleration:
slope of $V_{x}-t$ grant

$$
\vec{a}(t)=\frac{d \vec{v}}{d t}=\frac{d v_{x}}{d t} \vec{c}+\frac{d v_{y}}{d t} \vec{f}
$$

slope of V_{y}-t graph

$$
\begin{array}{r}
=a_{x} \vec{c}+\frac{a_{y}}{f} \\
=\frac{d^{2} x}{d t^{2}} \vec{c}+\frac{d^{2} y}{d t^{2}} \vec{j}
\end{array}
$$

$\Rightarrow x$ - and y-components of motion
can be treated indenendently!

$$
\begin{aligned}
& x(t) \underset{\text { area }=\Delta x}{\stackrel{\text { slope }}{\rightleftarrows}} V_{x}(t) \stackrel{\text { slope }}{\underset{\text { ara } a=\Delta}{\leftrightarrows}} V_{x}(t) \\
& y(t) \stackrel{\text { slope }}{\rightleftarrows} V_{y}(t) \stackrel{\text { slope }}{\rightleftarrows} a_{y}(t) \\
& \text { area }=\Delta y \\
& \Rightarrow \quad 2 D \text { motion }=\text { two } 1-D \text { motions! }
\end{aligned}
$$

The velocity \vec{v} of a particle at two different times t_{1} and t_{2} is shown below $\left(t_{2}>t_{1}\right)$.

Which vector best represents the average acceleration of the particle between these two times?

Example of 2-D motion: Projectile motion
(1) Object in given initial $\vec{V}_{0}=V_{0} \times \vec{C}+V_{0} \vec{j}^{\vec{j}}$ and moves in metical plane.
(2) 2D motion in the vertical plane defined by \vec{i}_{0} and direction of gravity \vec{g}.
(3) Only acting force/ acceleration is gravity (neglect air)

$$
\begin{aligned}
& \vec{a}(t)=0 \vec{c}-g \vec{\jmath} \\
& g=+10 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

(4) "Time of flight" (and $\Delta x, \Delta y$) determined by either x - or y-motion.
\Rightarrow analyze horizontal and vertical motions separately!

- Horizontal Motion:

$$
a_{x}=0 \quad \Rightarrow \quad v_{x} \quad \begin{gathered}
V_{x}(t)=\text { const }=V_{0 x} \\
\text { in } x \text {-divetion }
\end{gathered}
$$

- Vertical Motion:
$a_{y}=-g=-10 \mathrm{~m} / \mathrm{s}^{2}=$ cost

\Rightarrow Free fall in y !

A student sits on a cart moving at constant speed, and tosses a ball upward.

If the student wants to catch the ball in his/her lap on the way down, in what direction relative to his body should he toss the ball?
$\Rightarrow x$ and y motions are indppen dent!
\Rightarrow think about "frame of
A. Throw behind. reference" in moving cart!
B. Throw straight up.
C. Throw ahead.
both, ball and court are moving with the same horizontal speed.

Special Cass:
(1) Horizontal projetile mition from height h

$$
\begin{aligned}
& V_{y} \text { asea }=\Delta y=-h=-\frac{1}{2} g t_{f}^{2} \\
& \left.\Rightarrow t_{f}=\sqrt{\frac{2 h}{g}}\right\} \begin{array}{l}
t_{f} \\
\text { fall from } \\
\text { heighth } 0
\end{array}
\end{aligned}
$$

