Recap: 2-D Motion Lecture 7

$$
\begin{aligned}
-\vec{r}(t) & =x(t) \vec{\imath}+y(t) \vec{y} \\
\vec{a}(t) & =a_{x} \vec{\imath}+a_{y} \vec{y} \text { shone of } \\
\text { slope of } & =d v_{x} \vec{l}+d v_{y} \vec{y}
\end{aligned}
$$

$$
\begin{aligned}
\vec{v}(t) & =V_{x} \vec{\imath}+V_{y} \vec{j} \\
& =\frac{d x}{d t} \vec{\imath}+\frac{d y}{d t} \vec{y}
\end{aligned}
$$

slope of
$x-t$ graph

F slope of y-t gross
x and y components of motion can be treated independently?

- Projectile motion: initial velocity: $\vec{v}_{0}=V_{0} \times \vec{c}+v_{0 y} \vec{j} \quad p^{+y}$ un acceleration: $\vec{a}=0 \vec{c}+(-g) \vec{j}$
$\Rightarrow x$ motion: at constr. speed $v_{x}=V_{0 x}=$ canst $\Rightarrow \Delta x=V_{0 x} t$ $\Rightarrow y$ motion: free fall $v_{y}(t)=v_{0 y}-g t \Rightarrow \Delta y=v_{0 y} t-\frac{1}{2} g t^{2}$ Special cases:

y motion determine t_{f} :

$$
\Delta y=-h=-\frac{1}{2} g t_{f}^{2} \Rightarrow t_{f}=\sqrt{\frac{2 h}{g}}
$$

$$
\Delta x=V_{0 x} t_{f}
$$

conceprout Physics
A ZOOKEEPER DEVISES A RUBBER-BAND GUN TO SHOOT FOOD TO A MONKEY WHO IS TOO SHY TO COME DOWN FROM THE TREES.
IF THE MONKEY DOES NOT MOVE, SHOULD THE KEEPER AIM ABOVE, AT, OR'BELOW THE MONKEY?

A. Aim above
B. Aim at
C. Aim below
$\uparrow+y$ un
\Rightarrow need larger V_{0} as compared to $g=0$ care \Rightarrow aim above!

Today:

- Projectile motion - What is the best angle to throw a javelin at for maximum horizontal reach?
- The zookeeper/hunter and the monkey...
- Relative motion

(2) Object projected and returns to its in, 'tial height

$$
\Rightarrow \Delta y=0
$$

$$
\begin{aligned}
\vec{V}_{0} & =V_{0 x} \vec{l}+V_{0 y} \vec{j} \\
& =V_{0} \cos \theta \vec{\imath}+V_{0} \sin \theta \vec{\jmath}
\end{aligned}
$$

$$
\begin{aligned}
& V_{x}(t)=V_{0 x}=V_{0} \cos \theta=\cos , z \\
& V_{y}(t)=V_{0 y}-g t
\end{aligned}
$$

time of f.flight: $\quad \Delta y=0=v_{0 y} t_{f}-\frac{1}{2} g t_{f}^{2}$

$$
\begin{aligned}
& \Rightarrow t_{f}=\frac{2 v_{0 y}}{g}=\frac{2 v_{0} \sin \theta}{g}=2 t_{\text {apex }} \\
& t_{f} \text { for } \theta=90^{\circ}
\end{aligned}
$$

$\Rightarrow \max t_{f}$ for $\theta=90^{\circ}$
range:

$$
\begin{aligned}
\Delta x= & V_{0 x} t_{f}=V_{0 x} \frac{2 V_{0 y}}{g}=\frac{2 V_{0} \cos \theta V_{0} \sin \theta}{g} \\
& \Rightarrow \Delta x=\frac{V_{0}^{2} \sin (2 \theta)}{g}
\end{aligned}
$$

$\sin 2 \theta$ Dimetric $\Rightarrow \max \Delta x$ for $\theta=45^{\circ}$

\Rightarrow symmetric:

$$
\text { l.g. } \Delta x\left(\theta=30^{\circ}\right)=\Delta x\left(\theta=60^{\circ}\right)
$$

An object is thrown on flat ground at some angle with respect to the horizontal. The object rises to a vertical height $y_{\text {max }}$ before returning to the ground.

During its flight, how does the time the object spends with $\mathrm{y}>\mathrm{y}_{\max } / 2$ compare with the time it spends with $\mathrm{y}<\mathrm{y}_{\max } / 2$?

A. More time in lower part.
B. The same
C. More time in upper part.

$$
\begin{gathered}
\Delta x=V_{0 x} t \\
\Delta x \propto t
\end{gathered}
$$

"He has great hang time..."

(3)

x-mution determines t_{f} here!

$$
t_{f}=\frac{\Delta x}{V_{0 x}}
$$

(4)

t_{f} derencs on θ

