Recaps:

- Projectile motion:
$\stackrel{y \uparrow}{\longrightarrow}$

$$
\begin{aligned}
& \overrightarrow{v_{0}}=V_{0 x} \vec{l}+V_{0 y} \vec{j} \quad \vec{a}=0 \vec{c}+(-g) \vec{j} \\
& \Rightarrow x \text {-motion: at const speed } \quad V_{x}(t)=V_{0 x} \Rightarrow \Delta x=V_{0 x} t \\
& \Rightarrow y \text {-motion: freefall } \quad v_{y}(t)=V_{0 y}-g t \Rightarrow \Delta y=v_{0 y} t-\frac{1}{2} g t^{2}
\end{aligned}
$$

\Rightarrow analyze components independently!!
Special lases:

$(2)^{y}$

Additional special cases of projectile motion:
(3)

(4)

x-motion determine t_{f}

$$
t_{f}=\frac{\Delta x}{V_{0 x}}
$$

t_{f} depends on θ

When the ball at the end of the STRING SWINGS TO ITS LOWEST POINT, THE STRING IS CUT
 BY A SHARP RAZOR.

WHICH PATH WILL

Today:

- Relative motion
- Uniform circular motion
- Forces: Intro

Relative Motion:
1-D:

V_{B} wort $A=V_{B \text { wot ground }}-V_{A \text { nt ground }}$ B relative to A
B as seen by A
B in reference frame of A
$\Rightarrow V_{B}$ wot ground $=V_{B}$ mort $A+V_{A}$ nt ground
hera: V_{B} mA $=\left(-30 \frac{\mathrm{mi}}{\mathrm{h}}\right)-(30 \mathrm{mi} / \mathrm{h})=-60 \frac{\mathrm{mi}}{\mathrm{h}}$
2-D: \vec{V}_{B}^{\prime} wort $A=\vec{V}_{B}$ wot ground $-\vec{V}_{A}$ mort ground
$\Rightarrow \vec{V}_{B \text { mot groan }}=\vec{V}_{B}$ mot $A+\vec{V}_{\text {A }}$ not ground
\Rightarrow separate out x-and y-component

$$
\vec{v}_{A \text { wits }} \downarrow \vec{v}_{B \text { witgrond }} \Rightarrow \overrightarrow{v_{B A}} / \downarrow \vec{V}_{B G}
$$

Frame of Reference:
$\vec{V}_{\text {obj in reference frame } A}=\vec{V}_{o b j}$ inn ref. frame $B+\vec{V}_{\text {frame }} B \omega_{r} t$ frame A
(short: $\left.\vec{V}_{O A}=\vec{V}_{O B}^{L}+\vec{V}_{B A}\right) \leftarrow \begin{gathered}\text { note sequence for } \\ \text { correct }\end{gathered}$ correct sign!

"insertio ns $B^{N} \$$ separate ont x - and y-component

e.g.: $\vec{V}_{\text {moon w rt sun }}=\vec{V}_{\text {moonurt. }}$ earth $+\vec{V}_{\text {earth mut. Sen }}$

Two airplanes are flying along headings that form a right angle. Plane 1 heads due south at $450 \mathrm{mi} / \mathrm{h}$. Plane 2 heads due $\vec{V}_{1}=-450 \frac{\mathrm{mit}}{\mathrm{h}} \overrightarrow{\mathrm{f}}$ west at $150 \mathrm{mi} / \mathrm{h} . \quad \longleftarrow \vec{V}_{2}=-150 \frac{3}{2} \overrightarrow{\mathrm{c}}$ What is the velocity of Plane 2 relative to Plane 1? I.e., what is the apparent velocity of Plane 2 as viewed from the reference frame of Plane 1 ? (Take \vec{i} pointing E and \vec{j} pointing N.)

Reference Frame: the ground

S

Reference Frame: the ground

S

Reference Frame: the ground

Reference Frame: the ground

S

Reference Frame: the ground

$$
H
$$

Reference Frame: the ground

Reference Frame: the ground

Reference Frame: the ground

S

Reference Frame: the ground

Reference Frame: the ground

Reference Frame: Plane 1 (as viewed from plane 1)

Reference Frame: Plane 1 (as viewed from plane 1)

v_{1} relative to 1
$=0$

Reference Frame: Plane 1 (as viewed from plane 1)

v_{1} relative to 1
$=0$

Reference Frame: Plane 1 (as viewed from plane 1)

v_{1} relative to 1
$=0$

v_{1} relative to 1
$=0$

Reference Frame: Plane 1 (as viewed from plane 1)

v_{1} relative to 1
$=0$

Reference Frame: Plane 1 (as viewed from plane 1)
4

Plane 2 "crab-walks" sideways!

v_{1} relative to 1
$=0$

Snow on Wind shield:

$$
\vec{V}_{\text {snuw muticar }}=\vec{V}_{\text {shou mit.pre }}-\vec{V}_{\text {car urtiger. }}
$$

An object of mass m moves in a circle of radius r at constant speed v.
What is the inward acceleration of the particle a in terms of m, r and v ? Use dimensional analysis, ie. $a \propto m^{\alpha} r^{\beta} v^{\gamma}$

$$
\begin{aligned}
& a \\
& \frac{m}{s^{2}} \left\lvert\, \begin{array}{ccc}
m & r & v \\
\Rightarrow \alpha & m & m / s \\
\Rightarrow \alpha=0, \gamma=2, \beta=-1 \\
\Rightarrow a \alpha \frac{v^{2}}{r}
\end{array}\right., ~
\end{aligned}
$$

A.	$a=r v$
B..	$a \propto m v^{2} / r$
E.	$a=m v^{2} / r$
D.	$a \propto v^{2} / r$
E.	$a \leqq v^{2} / r$

detailed calculation gins:

$$
\left.a=\frac{v^{2}}{r}\right\} \begin{aligned}
& \text { Centripetal accel aeration } \\
& \text { in uniform circular motion }
\end{aligned}
$$

$\vec{v}(t)$
For an object to move in a circle at cost, oped, it must have $|a|=\frac{v^{2}}{r}=$ cont, pointing to $t h$ center of the circle, at lack point in it path.

- why $a \propto v^{2}$, not v^{\prime} ?

$$
\begin{aligned}
& \vec{a}_{\text {ard }}=\frac{\Delta \vec{v}}{\Delta t} \\
& \vec{v}_{1} \vec{v}^{\prime} \vec{v}_{2}
\end{aligned}
$$

$$
\left.\begin{array}{l}
|\Delta \vec{V}| \propto v \\
\Delta t=\frac{\text { path length }}{v} \propto \frac{r}{v}
\end{array}\right\} a \propto \frac{v}{\frac{v}{v}}=\frac{v^{2}}{r}
$$

Analysis of a Salad Spinner

- diameter of basket $d=2 r=0.2 \mathrm{~m}$
- basket revolutions/crank turn $=4$
- crank turns/second during operation=2
- Period of rotation
$=1 /($ crank turns \times revs $/$ turn $)=1 / 8 \mathrm{~s}$
- speed of basket rim $v=2 \pi r / T=2 \pi \cdot 0.1 \mathrm{~m} / \frac{1}{8} \mathrm{~s} 25 \mathrm{~m} / \mathrm{s}$
- inward acceleration of object on the rim

$$
a=v^{2} / r=25 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} / 0.1 \mathrm{~m}=250 \mathrm{~m} / \mathrm{s}^{2}
$$

- Divide by $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ to get accelerations in g 's:
$a=25 \mathrm{~g}$

The Cornell Electron Storage Ring (CESR)

Inside the Tunnel:

- Linear accelerator produces electrons and positrons.
- Synchrotron accelerates them to 99.9999995\% of $c(E=5$ GeV).
- Electrons/positrons stored in storage ring, circulating there.

Ring circumference $\quad=768 \mathrm{~m}$
Ring radius $=122 \mathrm{~m}$
Inward acceleration of electrons in storage ring?
$a=v^{2} / r$
$\sim\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2} \quad / 122 \mathrm{~m}$
$\sim \quad 7 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}$
~ 70 trillion g's

Force \vec{F}
so far: $\vec{r}(t) \rightleftarrows \vec{v}(t) \rightleftarrows \vec{a}(t)$ \} ~ c o m p l e t e l y ~ d e s c r i b e ~
Next: What causes motion? \Rightarrow Force What is a force:

- push or pull
- force acts on an object ("on")
- fores require an agent ("by")
- fore is a rector \Rightarrow mapnitadet direction
- can be contact forces, or long range forces (e.g. grain \%)
- determine $\vec{a}(t): \vec{a} \propto \vec{F}$

