Recap:

- Relative motion:

$$
\begin{aligned}
& \vec{V}_{B \text { wot } R} \\
& B \text { relative to } R \\
& B \text { as seen by } R \\
& B \text { in reference frame } R
\end{aligned} \quad \vec{V}_{B} \text { wat } \frac{A}{2} \vec{V}_{A} \text { wit } R
$$

e.g. $\vec{V}_{\text {rain writ ground }}=\vec{V}_{\text {rain writ car }}+\vec{V}_{\text {car writ ground }}$ $\vec{V}_{\text {boat }}$ wot ground $=\vec{V}_{\text {boat }}$ writ water $+\vec{V}_{\text {water w rt grocend }}$ $\xrightarrow[\vec{v}_{b w}]{\vec{v}_{b g r}} \vec{v}_{w g r}$

- Uniform circular motion:

$$
\begin{aligned}
& |\vec{v}|=\text { const }=\text { speed } \\
& \vec{v} \text { tangent to path } \\
& |\vec{a}|=v^{2} / r \text {, points to ward center }
\end{aligned}
$$

How does the magnitude of the force that Darling the daughter exerts on Kitty the cat compare with the force that Kitty exerts on Darling?

Do stop pulling the cat's tail, Darling."
"I'm not pulling Mummy, Kitty's pulling!"

$$
\left.\vec{F}_{A \text { on } B}=-\vec{F}_{B \text { on } A}\right\} N \text { III }
$$

A. $\left|F_{\text {Darling on Kitty }}\right|>\left.\right|_{\text {Kitty on Darling }}$
B. $\left|F_{\text {Darling on Kitty }}\right|=\mid F_{\text {Kitty on Darling }}$
C. $\left|F_{\text {Darling on Kitty }}\right|<F_{\text {Kitty on Darling }}$

Today:

- Forces
- Newton's laws of motion
- Gravitational force
- Normal force
- Friction
- Tension
- Spring force

have $\vec{a} \propto \vec{F}$, wat ebe mutter? \Rightarrow mass: $|\vec{a}| \propto \frac{1}{m}$
NII: Newton's second law of motion

$$
\vec{a}_{\text {object }}=\frac{\sum \vec{F}_{\text {on object }}}{m_{\text {obj }}}=\frac{\vec{F}_{\text {net on ob }}{ }^{\circ}}{m_{\text {obj }}}
$$

in component form:

$$
\begin{aligned}
a_{x} & =\frac{\sum F_{x, o n o b_{j}}}{m_{o b_{j}}} \quad a_{y}=\frac{\sum F_{y, \text { on } o b_{j}}}{m o b_{j}} \\
& \Rightarrow 2-D \text { problem }=21-D \text { problems }
\end{aligned}
$$

Note: External force only? Inter nail forces don 't affect the motion!

NI: Newton's first law of motion (special cone of NI)
If $\sum \vec{F}_{\text {on }}$ obj $=0$, then $\vec{a}=0$
\Rightarrow if object is initially at rest, then $\vec{v}(t)=0$ for all $t>0$.
\Rightarrow initially moving, t hen $\vec{v}^{3}=\overrightarrow{\text { cost }}$ for all t.

Units of force:

$$
[F]=[m][a]=\lg \frac{m}{s^{2}}=: N \text { (Newton) }
$$

Overhead views of a block that lies on a frictionless floor are want $\vec{v}=$ const $\Rightarrow \vec{a}=0 \Rightarrow{ }_{\vec{a}}=0 \Rightarrow=0$

If the force magnitudes are chosen properly, in which situations is it possible that the block is either stationary or $\mathbf{F}_{2} \quad$ moving with constant velocity?
A. (2) and (3)
B. (2) and (4)
C. (2), (3), and (4)
D. All four
(4) $\left.\mathbf{F}_{3} \quad F_{3}=-F_{2, y}\right\} \subset F=0$

Newton's $3^{\text {rd }}$ law of motion

$\left.\overrightarrow{\vec{F}_{A \text { on } B}} \underset{\overrightarrow{F_{B}} \text { on } A}{ }\right\}$ forces from object

$$
\vec{F}_{A \text { on } B}=-\vec{F}_{B} \text { on } A
$$

$$
\uparrow \quad \nearrow
$$

"interaction pair" = forces in volved in the interaction of two objects =actron-reation pair

NIII: - Force in an inter action pair act on different objects (never on the same)!
e.g. $\vec{F}_{\text {apple }}$ on earth and $\vec{F}_{\text {lares on apple }}$

- NIII true even if object are moving or accelerating!

Newton's Third Law:

"Proof": Break earth up into N apple-sized chunks:

Forces on apple:
$F_{\text {chunk } 1 \text { on apple }}$
$F_{\text {chunk } 2 \text { on apple }}$
$F_{\text {chunk }} 3$ on apple
F
$F_{\text {chunk } N \text { on apple }}$

$F_{\text {earth on apple }}$

$\mathrm{F}_{\text {apple on chunk } 1}+$
$\mathrm{F}_{\text {apple on chunk } 2+}$
\qquad
$F_{\text {apple on earth }}$

It only seems reasonable that each term $F_{\text {chunki on apple }}$ and $F_{\text {apple on chunki }}$ on either side should be equal, so the sums must be equal.

Some Forces:

- Weight $\vec{W}=$ gravitational force $=\vec{F}_{\text {by eats on object }}$
= force on object due to Earth's grawly

$\vec{W}=m \vec{g} \quad$ pointing to center of Earth
$\left[g=10 \mathrm{~m} / \mathrm{s}^{2}\right.$ at earth's surface]
- Normal force: $\vec{N}^{2}=\vec{F}_{\perp}$ to surface by surface on object

- $\bar{N}^{\prime} p$ eventomotion 1 to a surface (into surface)
- se/f-adjusting force, to prevent motion into surface $\Leftrightarrow a_{1}=0$
- \vec{N} always 1 to reface ($90^{\circ} \mathrm{mint}$ surface)
- \vec{N} is the \perp component of the force by a surface on an object
- Friction: - 11 to surface

- Tension \vec{T} :
- opposes motion relative to surface
- Il component of the force by a surface on an object

e.g. rope, wire, rod, bone, muscle,...
VII:

$$
\begin{aligned}
& \sum F_{x}=m a_{x}=T_{1}-T_{2} \\
& \Rightarrow \text { if } a_{x}=0, \text { then } T_{1}=T_{2}
\end{aligned}
$$

also: if $\frac{m_{\text {rope }} \approx 0}{\text { valid when }} \Rightarrow T_{1}-T_{2}=m a_{x}=0 a_{x}=0$
mope \ll mass of other objects in problem

$$
\Rightarrow T_{1}=T_{2} \text { even if } a_{x} \neq 0
$$

\Rightarrow use this in P2207 unless other mise stated
\vec{T} : - equal in magnitude at either end of the rope (if more ≈ 0, or $\vec{a}=0$)

- force each piece of rope exerts on the adjacent piece / section / object
- Spring Force: F spring

For ideal op ring:

$$
\begin{aligned}
& \text { force } \\
& \text { constant" }
\end{aligned}
$$

