#### Recap

#### · Capacitor:

- Energy stored: 
$$u_{can} = \frac{Q^2}{2C} = \frac{1}{2}QOV = \frac{1}{2}COV^2$$

· Energy density of an electric field:

· Dielectrico: Insulator that can be polarized by an Engli

applied electric field =) Ewith = Eapplied

=) replace & by JKE, in all equations dielectrics = KE dielectric

if dielectric is present constant

· Electric current:

$$i = \frac{dq}{dt} = \frac{oq}{ot} = \left( \frac{change persons}{ana A pertine} \right)$$

$$EiJ = \frac{c}{s} = an per = 1A$$



## **Today:**

- Electric current
- Current density
- Electrical resistance





## Notes:

1 Charge is conserved:



The current is the same in any cross section of the wix ("continuity")

 $i_{o}$ 

for junction:

(2) Average current density: )

$$J = \frac{i}{A_{\perp}} = \frac{cerrent through A_{\perp}}{A_{RG} \perp to cerrent flow}$$

# (3) Direction of current

anow indicating "direction "of

Convention: Current arrow is drawn in direction in which positive charge carriers would move, if they would carry the current.

Current

But: actual chaye carriers can have positive or negative charge?

moving + charges: DQCO + Q DQ>0 }"Cument amou"

moving - charges: DQCO = Q DQ>0 } "Cument points to moving - charges: DQCO = Q DQ>0 } might in

net effect some

points to both cases Consider a beam of protons, all moving with constant velocity  $\vec{V}$ .

If n is the number of protons per unit volume in the beam, how many protons pass through the cross sectional area A in time  $\Delta t$ ?

# of protons = 
$$n \cdot Volume passing through A in ot$$
=  $n \circ A = n \land Vol$ 

A.  $nA\Delta t$  B.  $n/(Av\Delta t)$  (C)  $nAv\Delta t$  (C)  $nAv\Delta t$ 

Consider a beam of protons (charge e), all moving with constant velocity  $\vec{V}$ . n is the number of protons per unit volume in the beam.

What is the electric current carried by the beam?

in ot: 
$$nAvot$$
 protons cross  $A$ , each with charge  $e$ 

$$\Rightarrow \Delta Q = e \cdot (mAvot)$$
 in time interval ot
$$\Rightarrow DQ = [i - nevA] \Rightarrow aveage current denity = J = \frac{i}{A_1} = nev$$

A. 0 (B) nevA C.

C. nev

D. evA

| Con | C | lus | ion | • |
|-----|---|-----|-----|---|
|     |   |     |     | - |

- magnitude of cument density in conductor:

- Define current density vector:

$$\vec{3} = m q \vec{v}_{drift}$$
  $q > 0$   $\vec{2}$   $\vec{3}$   $\vec{3}$   $q < 0$   $\vec{v}_{d}$   $\vec{3}$   $\vec{3}$ 

points in direction of "current amou"

Electre Cuments in Metalo: 7 elections are the mobile no field applied charge carries: quelin =- e - How many mobile (free) ora A electrons are there? Avogados fer 10 microscopic billy =)  $n = \frac{\text{# of charg conies}}{\text{volume}} = (1...2) \cdot \frac{N_A \cdot p^K}{\text{atomic mas}}$ =) electrons move randomly why? random motion speed 1029 free e/m? A (g/mde) Comes from non-zero energy ("Fermi energy") of free electrons in metal =) Vrandom = \( \frac{2 \in \text{Esemi}}{m} \tau 10 \frac{n}{\text{.}} But: electrons collide constantly with each other and with atoms in metal (huge!) (10/3 to 10/4 6ims / sec!) =) random motion =) Varuay = 0

How to get a current? => Apply electric field! +/1/1- Voliff Note: batter main tains potential difference E-6- E-6-6-=) electric field along wire =) not in electrostatic equilibrium ? « Vdvift electrons drift with average (applied )=)
electric field )=) drift speed Vdrift in direction opposite 60 É prince felation co (in addition to fost, rondom motion)

=) (but constantly (averse, constant)

energy

in metal:

(drift = 10 - 5 10 3 20/5) (Fel on electron accelerate than) =) Current density in metal: J=n(-e) Variff } point in disction of E'p

General cost: Current density J= 1/A, if both +

vector 1 to area 3 = n+ q+ Vdriff, q+ +n-q-Vdriff, q.  $\begin{array}{c|c}
\hline
 & & \\
\hline$ with 9+20 and 9-60 =) total current through area A: i= 55. d4 = 5. 4 = 5A1605 = n+9+1Vdnift, 9+1A1 if clement is + n\_19,11Vdrift,4-1A1
Uniform access the surface

n: number of + or - change carriers/volume