n, 9-10drift, 9-1+n-19-110drift, 9-1

e (urrent density:) # of positive charge per charge per volume positive charge comies

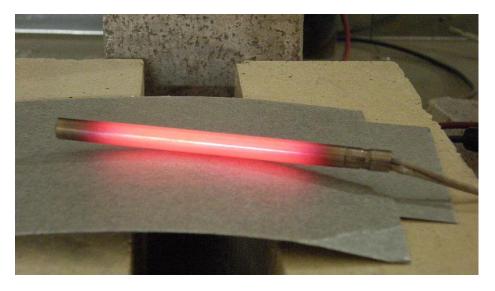
$$|\mathcal{I}| = \frac{\text{Current}}{\text{area } \perp \text{ to current flow}} = \frac{i}{A_{\perp}}$$

5 always points in direction positive charges would move, i.e. in direction of Ep

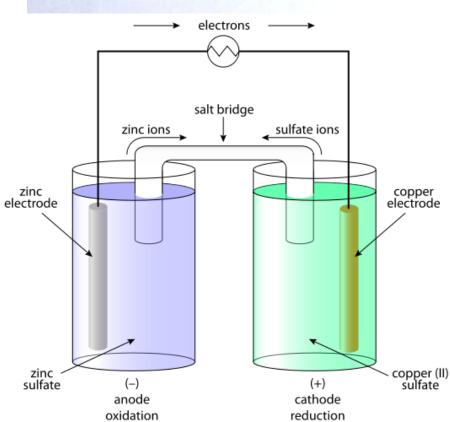
=>
$$\frac{\text{total current through ana A}}{i = JA_1 = \int \frac{1}{2} \cdot dA}$$

· Electric currents in metals:

/ Varift = Vaverage Whifi
we - we-

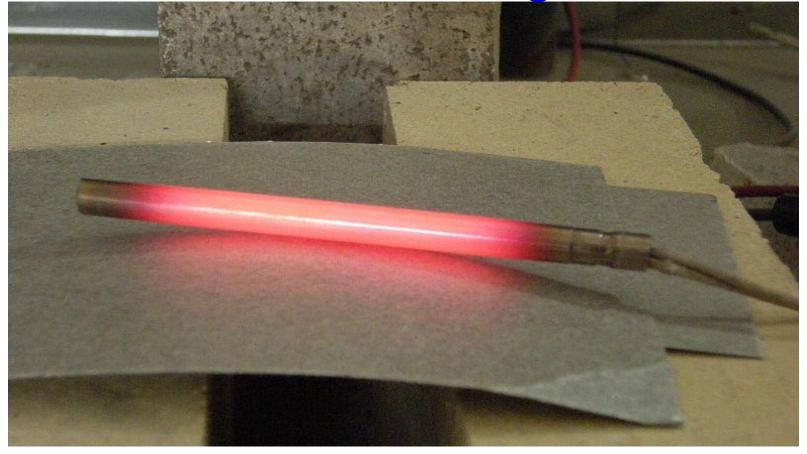

- nfree e- = 10x3/m3

- move randomly with Vrandom \$ 10 m


- drift in electric field very slowly This = = n(-e) This Vhist = Vavery = 10-5 to 10 3 3/s

Today:

- Electrical resistance
 - Resistivity and conductivity

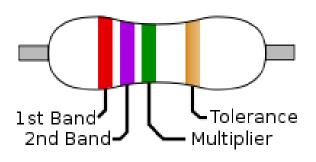

Electrical Resistance / Resistor

isti Ti · Conductor provides resistance to Current flow (collisions!) =) Vdrift, aus = comot even though 2 Conductor/ Vaistor electric force is acting on charge =) | Why electric | = | What dere to |

field on | Whistance | potential difference often restected, because it is =) electrical energy usually dissipated into the mal energy ("Joule heating") =) Define electrical Resistance R: R= DVover resistor (=) DV=Ri Resistor R lines: ideal wires without resistance

Unit: [R] = Volt amper = Ohn=1 SC

Joule Heating:



Running current through a resistance creates heat, in a phenomenon called Joule heating. In this picture, a cartridge heater, warmed by Joule heating, is glowing red hot.

Notes:
D'High resistance -> low current à for given potential différence ov
difference ov
(2) Resistor: Conductor whose function in a circuit
to provide a speak is some
typically: R=18, many MR
3) Resistance R depends on:
- Geometry of ristor (length, diameter.)
- Resistivity P of the conducting material used
(see next slive)
- Usually varies with temperature, since P= P(T)
"Ohm's Low" in schanges with applied potential different
R = 2 = const i.e. Islope = /R dynason
onder of ov for Tresistor obeys This resistor
"Ohm's Law" dos not!

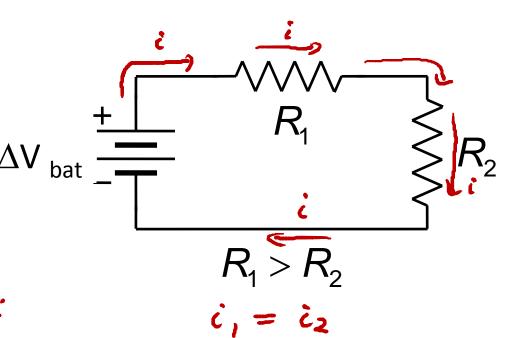
Electronic color code

- Used to indicate the values of electronic components
- very commonly for resistors, but also for capacitors, inductors

Color	Significant figures	Multiplier	Tolerance Temp. Coeffici			
Black	0	×10 ⁰	_		250	U
Brown	1	×10 ¹	±1%	F	100	S
Red	2	×10 ²	±2%	G	50	R
Orange	3	×10 ³	-		15	Р
Yellow	4	×10 ⁴	(±5%)	-	25	Q
Green	5	×10 ⁵	±0.5%	D	20	Z
Blue	6	×10 ⁶	±0.25%	С	10	Z
Violet	7	×10 ⁷	±0.1%	В	5	М
Gray	8	×10 ⁸	±0.05% (±10%)	Α	1	K
White	9	×10 ⁹	_		_	
Gold	-	×10 ⁻¹	±5%	J	-	
Silver	-	×10 ⁻²	±10%	K	-	
None	_	-	±20%	М	_	

- band #1 is first significant figure of component value (left side)
- band #2 is the second significant figure
- band #3 is the decimal multiplier
- band #4 if present, indicates tolerance of value in percent (no color means 20%)

 $100 \text{ kOhm} = 10*1x10^4$

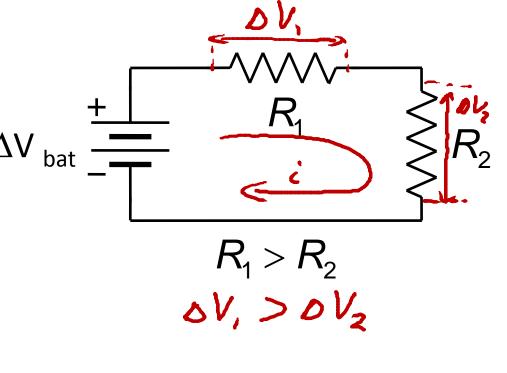

Resistivity/ conductivity of Naterals
materials: (current) of (electric field) materials: (density) of applied
=) $\vec{J} = \vec{\sigma} \vec{E} = \frac{1}{p} \vec{E}$ $\vec{\sigma} = \frac{1}{p}$
with o: conductivity of the material [o]= A/m2 = 1
P: resistivity of the material [P] = 12m
5 Copper = 1.7.10 Sim
~) Variation with temperature:
good $P(T) = P(T) + P(T) \sim (T, T)$
approximation: $P(T) = P(T_0) + P(T_0) \propto (T - T_0)$
Inital Tot
P(To) a slope = P(To) & d: tempeature coefficien
P(1) d: tempeater coefficient of resistivity
P(To) A slope = P(To) & temp d: templeature coefficient of resistivity Ex] = 1/Welvin
· u

with constant diameter have: DV=EL E = P Jdifflunce A SV for i = comt

Resistive Power Dissipation:
i resistor R : - OV = V V_+ = - i P < 0
- charge of mous through is to
in some time at
V+ DV=-iRV- hijh low pokulial pokulial energy:
$\Delta 2I = \Delta q \cdot \Delta V = i \cdot \Delta t \Delta V < 0$
=) This energy is lost in a resist on to other form of energy (as head)
7 - " " 5 +
$(rak of energy) = \frac{\partial u}{\partial t} = \frac{da}{dt} = Power = P = i DV $
- 101 101 101 101 101 101 101 101 101 10
Principaled = $i DV = i^2 R = \frac{V^2}{R}$ sing $R = \frac{ DV }{i}$
by current R

Which resistor has the greater current going through it?

Change is conserved:

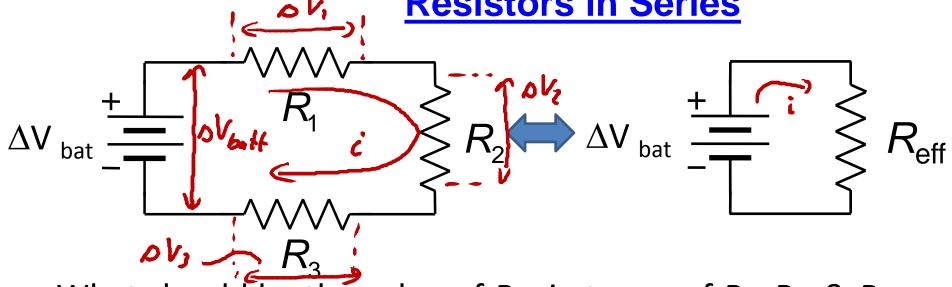


A. R_{1}

B. R_2

C. The current through both resistors is the same

Which resistor has the greater voltage (magnitude of potential difference) across it?



 $A.) R_{2}$

B. R_2

C. The voltage across both resistors is the same

What should be the value of $R_{\rm eff}$ in terms of R_1 , R_2 , & R_3 so that the same current flows in both circuits?

som: Cummt:
$$i = i_1 = i_2 = i_3$$

add: voltogs: $DV_{i,++} = DV_i + DV_2 + DV_3$
 $= R_i i + R_2 i + R_3 i = (R_i + R_3 + R_3)i$
 $= R_i i + R_3 i + R_3 i = R_i i$
 $= R_i i + R_3 i + R_3 i = R_i i$
 $= R_i i + R_3 i + R_3 i = R_i i$