Recap

- Elertrical Resistance:

Resistance: $R=\frac{\Delta V_{\text {over nsistor }}}{\text { currest } i}$
Resistivity/conductriwit: material prope ty:

$$
\vec{J}=\sigma \vec{E}=\frac{1}{\rho} \vec{E}
$$

conductivits Tristivity

- tem peroture depsendence:

$$
\rho(T)=P\left(T_{0}\right)[1+\alpha \Delta T]
$$ tem peature coefficiant of resistivit,

- for wise:

$$
R_{\text {wixe }}=\frac{\rho L}{A}
$$

Lecture 12

U
i hig< pot. \longrightarrow luw potential i enejy for $\overrightarrow{\Delta u=q 0 V}$ enejy for
chape $q>0$
electric puter torel enejg is tramsfered to of the formof enery
$\underset{\substack{b y \\ \text { curgent }}}{P^{2}}=i \Delta V=i R^{2}=\frac{\Delta V^{2}}{R}$

Today:

- "Pumping charges":emf - RC circuits

What should be the value of $R_{\text {eff }}$ in terms of $R_{1}, R_{2}, \& R_{3}$ so that the same current flows in both circuits?
sam: current: $i=i_{1}=i_{2}=i_{3}$
add: voltages: $\Delta V_{b}+f=\Delta V_{1}+\Delta V_{2}+\Delta V_{3}$

$$
=R_{1} i+R_{2} i+R_{3} i=\left(R_{1}+R_{2}+R_{3}\right)_{i}
$$

with $R_{\text {eff }}=\sum_{i=1}^{N} R_{i}$ for resistor $=R_{\text {eff }} i$ in series

Which resistor has

 the greater current going through it?$$
i=\frac{\Delta V}{R} \propto \frac{1}{R}
$$

$$
\begin{aligned}
& R_{1}>R_{2} \\
& \Rightarrow \quad i_{1}<i_{2}
\end{aligned}
$$

A. R_{1}
B. R_{2}
C. The current through both resistors is the same

What should be the value of $R_{\text {eff }}$ in terms of $R_{1}, R_{2}, \& R_{3}$ so that the same current flows in both circuits?
same: voltage $\Delta V_{\text {batt }}=\Delta V_{1}=\Delta V_{2}=\Delta V_{3}$
add: currents: $i=i_{1}+i_{2}+i_{3}=\frac{\Delta V_{\text {batt }}}{R_{1}}+\frac{\Delta V_{\text {batt }}}{R_{2}}+\frac{\Delta V_{\text {batt }}}{R_{3}}$
with $\frac{1}{R_{\text {aft }}}=\sum^{N} \frac{1}{R_{i}}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right) \Delta V_{\text {bot }}=\frac{1}{R_{\text {eft }}} \Delta V_{\text {bat }}$
 $R_{\text {eff }}$

Which resistors are in series?
Two seistons are in series
if the same charge carrier
must go throngs both resistors.
A. A and B
B. $\quad A$ and C
C. A and E
D. B and D
(E.) Both answers C and D above

Which resistors are in parallel?
Two resistors are in parallel, if same potential difference $A V$ is applied across both resistor!

R_{c} is in parallel wits $R_{B D}=\left(R_{B}+R_{0}\right)$ but not R_{B} or \mathbb{P}_{D} alone.

Circuits

\sqrt{V}
Cir chit diagram
higher potential.

$$
[\varepsilon]=\text { volt }
$$

- $\varepsilon_{m} f$ devices

Coutdated nama: "electromotive force"

- produces a steady flow of charges
by "pump ping" them to a higher
electric potential energy
\Rightarrow main trains a potential difference V_{+}- V_{-}between its terminal
\Rightarrow converts some form of ensesy (chemical, sumbijit...) into electrical ene ry Define: $\mathscr{L}^{\text {not } \varepsilon_{0} \text { ! }}$
Emf device
"pumps"
charges to
higher
potential
energy

$$
\varepsilon=\frac{d w}{d q} \Rightarrow\left(\begin{array}{l}
\text { work dom by en f } \\
\text { device pen } \\
\text { charge o } q
\end{array}\right)=\varepsilon \Delta q=\frac{d w}{d q} \Delta q=\Delta w
$$

\Rightarrow Power delivered by emf device:

$$
P_{e m f}=\frac{\Delta W}{\Delta t}=\varepsilon \frac{\Delta q}{\Delta t}=\varepsilon i
$$

7 delifes ene jg in for of electric potential ene ry
\Rightarrow This encejy is "used"/ converted into another form of energy in the electric circuit, ie. by the circuit device: since $V_{a}>V_{b}$
energy "used" in device $=\Delta q\left(V_{a}-V_{b}\right)=\Delta q$ ovove device

$$
\begin{aligned}
& {[P]=\frac{c}{s} \frac{y}{c}=\frac{J}{s}=\text { watt }}
\end{aligned}
$$

Kirchhoff's cirenit rules:
(a) Loup rule: for closed loop:

$$
V_{A}+\underbrace{\varepsilon+\Delta V_{1}+\Delta V_{2}+\Delta V_{3}}=V_{A}
$$

$$
=0
$$

$$
\Rightarrow \sum_{i=1}^{N} \Delta V_{i}=0
$$

for sum of potential change in closed
circuit loop; water
(b) Junction null:
i_{0} junction

at junction: $i_{0}=i_{1}+i_{2}$

$$
\left.\Rightarrow \sum i_{i n}=\sum i_{\text {out }}\right\} \begin{aligned}
& \text { chaps is } \\
& \text { conserved }
\end{aligned}
$$

Ideal emf device - Has no internal resistance.

Real emf device - Has

 internal resistance r.When a load resistance R is connected to the real emf device, what is the potential difference across its terminals? for real emf: $\varepsilon+\Delta V_{r}+\Delta V_{R}=0=\varepsilon-i r-i R=\varepsilon-i(r+R)$
$\Rightarrow i=\frac{\varepsilon}{r+R} \Delta V_{\text {real }}=\varepsilon+\Delta V_{r}=\varepsilon-i r=\varepsilon-\frac{\varepsilon r}{r+R}=\varepsilon \frac{R}{r+R}=-\Delta V_{R}$

$$
\begin{array}{|lll}
\text { A. } \mathcal{E} & \text { B. } 0 & \text { C. } \varepsilon\left(\frac{r}{R}\right) \text {. (D) } \varepsilon\left(\begin{array}{c}
\left.\frac{R}{r+R}\right)
\end{array} \text {. E. } \varepsilon\left(\frac{r}{r+R}\right)\right.
\end{array}
$$

Standard Alkaline Batteries:

- Converts chemical energy into electrical energy
- Anode (negative terminal) is made of zinc powder
- Cathode (positive terminal) is composed of manganese dioxide
- Electrolyte is potassium hydroxide

$\mathrm{Zn}+2 \mathrm{OH}^{-}->\mathrm{ZnO}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longleftarrow$ At potential $\mathrm{V} \sim 1.5 \mathrm{~V}$ At potential V ~ OV
$2 \mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}->\mathrm{Mn}_{2} \mathrm{O}_{3}+2 \mathrm{OH}^{-}$

RC circuit: Charging and discharging of a capacitor

$$
\varepsilon \underset{-}{+} \rightarrow_{i}^{a}
$$

- At time $t=0$ move the switch to position a.
- Current i begins to flow to charge the capacitor.
- i into the upper plate of the capacitor always equals i out of the lower plate even though no charge flows across the gap between the plates.

At time $t=0$ the switch is moved to position a.
After a very long time what will be the voltage on the capacitor? afto long time: $i \rightarrow 0 \Leftrightarrow$ fully chased

$$
\Rightarrow \Delta V_{R \rightarrow 0} \Rightarrow\left|\Delta V_{c}\right|=\varepsilon \quad \text { capacitor }
$$

A. 0 B. $i R$
(c) ε
D. $\rightarrow \infty \mathrm{V}$, the voltage will keep increasing as long as the switch is at position a.

