Recap

- **Electrical Resistance**:

 \[R = \frac{\Delta V}{\text{over resistor}} \]

 \[\text{Resistance: } R = \frac{\Delta V}{\text{current } i} \]

- **Resistivity/conductivity**:

 \[\sigma = \frac{1}{\rho} \]

 Conductivity \(\sim \) Resistivity

- TEMPERATURE DEPENDENCE:

 \[\rho(T) = \rho(T_0)[1 + \alpha DT] \]

 Temperature coefficient of resistivity

- For wire:

 \[R_{\text{wire}} = \frac{\rho L}{A} \]

Lecture 12

- **High Pot.** \(q > 0 \)

 \[\Delta V = q \]

- **Low Pot.** \(q < 0 \)

 \[\Delta V = -q \]

- **Energy for** \(\Delta V = q \)

 \[\text{Energy for } \Delta V = q \]

 \[q > 0 \]

- **Electric Potential Energy is Transformed to Other Forms of Energy**

 \[P_{\text{el}} = i \Delta V = iR^2 = \frac{\Delta V^2}{R} \]

 Current
Today:

- “Pumping charges”: emf
- RC circuits
What should be the value of R_{eff} in terms of R_1, R_2, & R_3 so that the same current flows in both circuits?

Current: $i = i_1 = i_2 = i_3$

Add Voltage: $\Delta V_{\text{bat}} = \Delta V_1 + \Delta V_2 + \Delta V_3$

with

$$ R_{\text{eff}} = \sum_{i=1}^{\sum} R_i $$ for resistors in series

$$ i = R_{\text{eff}} \ i $$
Which resistor has the greater current going through it?

\[i = \frac{\Delta V}{R} \propto \frac{1}{R} \]

\[R_1 > R_2 \]

\[\Rightarrow i_1 < i_2 \]

A. \(R_1 \)
B. \(R_2 \)
C. The current through both resistors is the same
What should be the value of R_{eff} in terms of R_1, R_2, & R_3 so that the same current flows in both circuits?

Same: voltage $\Delta V_{\text{bat}} = \Delta V_1 = \Delta V_2 = \Delta V_3$

Add: current $i = i_1 + i_2 + i_3 = \frac{\Delta V_{\text{bat}}}{R_1} + \frac{\Delta V_{\text{bat}}}{R_2} + \frac{\Delta V_{\text{bat}}}{R_3}$

with $\frac{1}{R_{\text{eff}}} = \sum_{i=1}^{n} \frac{1}{R_i}$ for resistors in parallel

$R_{\text{eff}} = \sum_{i=1}^{n} \frac{1}{R_i}$
Which resistors are in series?

Two resistors are in series if the same charge carrier must go through both resistors.

A. A and B
B. A and C
C. A and E
D. B and D
E. Both answers C and D above
Which resistors are in parallel?

Two resistors are in parallel, if same potential difference \(V \) is applied across both resistors!

A. A and B
B. A and C
C. A and E
D. C and D
E. No pair listed above
Circuits

- **Emf device** (outdated name: "electromotive force")
 - produces a steady flow of charge by "pumping" them to a higher electric potential energy
 - maintains a potential difference $V_+ - V_-$ between its terminals
 - converts some form of energy (chemical, sunlight...) into electrical energy

Define: not E_0?

$$\text{emf} = \mathcal{E} = \frac{\Delta W}{\Delta Q} = \frac{dW}{dQ} = \left(\frac{\text{Work per unit charge done by the emf device to move charge from low to high potential energy terminal}}{\text{Charge}}\right)$$

$L \in J = \text{volts}$
Potential electric energy is “used” (converted to other forms of energy) in the devices of the circuit.

Potential energy

Emf device “pumps” charges to higher potential energy

q

q
\[E = \frac{dW}{dq} \Rightarrow \left(\text{work done by emf \ (device \ by \ pump)} \right) = \frac{dW}{dq} \cdot dq = dW \]

\[= \text{Power delivered by emf device:} \]

\[P_{\text{emf}} = \frac{dW}{dt} = E \frac{dq}{dt} = Ei \]

\[\text{delivers energy in form of electric potential energy} \]

\[= \] This energy is "used"/converted into another form of energy in the electric circuit, i.e. by the circuit device: since \(V_a > V_b \)

Energy "used" in device = \(\Delta q \cdot (V_a - V_b) = \Delta q \cdot OV \text{ over device} \)

\[= \left(\text{Power \ "used \ by circuit device"} \right) = P_{\text{device}} = \frac{\text{Energy used}}{\text{time \ interval}} = \frac{\Delta q \cdot OV}{\Delta t} = i \cdot OV \text{ over device} \]

\[\Sigma P_j = \frac{2}{5} \cdot \frac{2}{5} = \frac{2}{5} = \text{Watt} \]
Kirchhoff’s circuit rules:

(a) Loop rule:

for closed loop:

\[V_A + \varepsilon + 0V_1 + 0V_2 + 0V_3 = V_A \]

\[\sum_{i=1}^{N} \Delta V_i = 0 \]

for sum of potential change in closed circuit loop; watch out for correct sign of \(\Delta V \).

(b) Junction rule:

at junction: \(i_0 = i_1 + i_2 \)

\[\sum i_{\text{in}} = \sum i_{\text{out}} \] \[\text{charge is conserved} \]
Ideal emf device – Has no internal resistance.

Real emf device – Has internal resistance \(r \).

\[\mathcal{E} + \Delta V_R = 0 = \mathcal{E} - \mathcal{I}R \Rightarrow \mathcal{I} = \frac{\mathcal{E}}{R} \]

When a load resistance \(R \) is connected to the real emf device, what is the potential difference across its terminals?

For real emf:

\[\mathcal{E} + \Delta V_R + \Delta V_R = 0 = \mathcal{E} - \mathcal{I}r - \mathcal{I}R = \mathcal{E} - \mathcal{I}(r + R) \]

\[\Rightarrow \quad \mathcal{I} = \frac{\mathcal{E}}{r + R} \]

\[\Delta V_{\text{real emf}} = \mathcal{E} + \Delta V_R = \mathcal{E} - \mathcal{I}r = \mathcal{E} - \frac{\mathcal{E}r}{r + R} = \frac{\mathcal{E}R}{r + R} = -\Delta V_R \]

A. \(\mathcal{E} \)
B. 0
C. \(\mathcal{E} \left(\frac{r}{R} \right) \)
D. \(\mathcal{E} \left(\frac{R}{r + R} \right) \)
E. \(\mathcal{E} \left(\frac{r}{r + R} \right) \)
Standard Alkaline Batteries:

- Converts chemical energy into electrical energy
- Anode (negative terminal) is made of zinc powder
- Cathode (positive terminal) is composed of manganese dioxide
- Electrolyte is potassium hydroxide

\[\text{Zn} + 2 \text{OH}^- \rightarrow \text{ZnO} + \text{H}_2\text{O} + 2 \text{e}^- \]
\[2 \text{MnO}_2 + \text{H}_2\text{O} + 2 \text{e}^- \rightarrow \text{Mn}_2\text{O}_3 + 2 \text{OH}^- \]

At potential \(V \approx 1.5\text{V} \)
At potential \(V \approx 0\text{V} \)
RC circuit: Charging and discharging of a capacitor

- At time \(t = 0 \) move the switch to position \(a \).
- Current \(i \) begins to flow to **charge** the capacitor.
- \(i \) into the upper plate of the capacitor always equals \(i \) out of the lower plate even though no charge flows across the gap between the plates.

\[\epsilon \quad \begin{array}{c}
\text{---}
\end{array} \quad b \quad a
\]

\[R \quad \begin{array}{c}
\text{---}
\end{array} \quad C
\]

\[i \quad +q \quad -q \quad \text{initial}: q = 0 \]

\[\Rightarrow \Delta V_c = \frac{q}{C} \quad \text{initial} \]

\[= 0 \]
At time $t = 0$ the switch is moved to position a.

After a very long time what will be the voltage on the capacitor?

- A. 0
- B. iR
- C. \mathcal{E}
- D. $\rightarrow \infty$ V, the voltage will keep increasing as long as the switch is at position a.

Loop rule: $\mathcal{E} + \Delta V_R + \Delta V_C = 0$