Recap

- **Resistor in Series and Parallel**

\[
\frac{1}{R_{\text{eff, parallel}}} = \sum_{i=1}^{N} \frac{1}{R_i}
\]

- **Emf device**:

\[
\text{emf} = \mathcal{E} = \frac{dW}{dt} = V_+ - V_- = \int \mathcal{E} \, dt = \text{volt}
\]

Power delivered by emf device = \(P_{\text{emf}} = i \mathcal{E} \)

Power "used" by circuit device = \(P_{\text{device}} = i \Delta V \) over device

- **Kirchhoff's rules**:

 - for closed loop: \(\sum_{l=1}^{N} \Delta V_e = 0 \)
 - for junction: \(\sum i_{\text{in}} = \sum i_{\text{out}} \)
Today:

- More on RC circuits
- Magnets and magnetic field
RC circuit: Charging

At time $t = 0$ the switch is moved to position a.

Use loop rule: $\mathcal{E} + \Delta V_R + \Delta V_C = 0$

$$= \mathcal{E} - Ri - \frac{q}{C} = 0$$

Use: $i = \frac{dq}{dt}$

$$= \mathcal{E} - R \frac{dq}{dt} - \frac{q}{C} = 0$$

"differential equation" for charging

At $t = 0$: $q(t=0) = 0$

"initial condition"

Solution: $q(t) = \mathcal{E} \left[1 - e^{-t/RC} \right]$ exponential form

Check: $q(t=0) = 0 \quad \frac{dq}{dt} = \frac{\mathcal{E}}{R} e^{-t/RC} \quad e = 2.718...$
Charging of a Capacitor:

Charge: \[q_C(t) = CV \left[1 - e^{-t/\tau}\right] \]

with time constant \[\tau = RC \]

of exponential charging

recall: \[e^{-1} = 0.37 = 37\% \]
\[\Rightarrow (1 - e^{-1}) = 0.63 = 63\% \]

Current during charging

\[i(t) = \frac{dq}{dt} = \frac{V}{R} e^{-t/\tau} \]

at \(t = 0 \): \[i(0) = \frac{V}{R} \]

Potential change across capacitor

\[\Delta V_C = \frac{q}{C} = V \left[1 - e^{-t/\tau}\right] \]

at \(t = 0 \): \[\Delta V_C(0) = V \]

Graph showing charge over time with a maximum charge of \(CV \). The current is shown as a function of time with an initial current of \(\frac{V}{R} \). The potential change across the capacitor is also shown, starting at \(V \) and decaying exponentially over time.
The switch has been at position a for a very long time.

At time $t = 0$ move the switch to position b.

Current i begins to flow to discharge the capacitor.
At time $t = 0$ the switch is moved to position b.

RC circuit: Discharging

\[\Delta V_c = \frac{q}{C} \]

\[\Delta V_c = \frac{q_{\text{final}}}{C} = \frac{q(t)}{C} \]

\[q_{\text{initial}} = q(t=0) = q_0 \]

Solution:

\[q(t) = q_0 e^{-t/RC} \]

Check:

\[q(t=0) = q_0 \quad \text{and} \quad \frac{dq}{dt} = -\frac{q_0}{RC} e^{-t/RC} \]
Discharging of a capacitor:

Charge:

\[q(t) = q_0 e^{-t/\tau} \]

With time constant \(\tau = RC \) of exponential decay

Current during discharging:

\[i(t) = -\frac{dq}{dt} = \frac{q_0}{RC} e^{-t/\tau} \]

\[i(t=0) = \frac{q_0}{RC} \]

Potential change across capacitor:

\[\Delta V_c = \frac{q}{C} = \frac{q_0}{C} e^{-t/\tau} \]

\(~\text{exp. decay}~\)

~ exp. decay

\(~\text{exp. decay}~\)
What is the approximate value of the time constant τ for this decay of electric current from a discharging capacitor in a simple RC circuit?

$\tau = \ ?$

A. $\sim 25 \text{ s}$
B. $\sim 35 \text{ s}$
C. $\sim 50 \text{ s}$
D. $\sim 100 \text{ s}$
E. $\sim 250 \text{ s}$

\[i(t) = \frac{i_0}{q_0/RC} e^{-t/\tau} \]

\[i(t=\tau) = i_0 e^{-1} = 120 \text{mA} \cdot 0.37 \]

\[= 44 \text{mA} \]

\[\Rightarrow \tau = 50 \text{s} \]
Approximately, what was the discharging capacitor’s initial charge at time $t = 0$?

$q_o = ?$

A. 1.2 C
B. 3.0 C
C. 6.0 C
D. 12 C
E. 18 C

\[
q_o = \frac{q_0}{RC} = \frac{q_0}{C} \Rightarrow q_0 = \dot{q}_0 \cdot C
\]

$$= 120 \times 10^{-3} \times 50 \text{ s} = 6 \text{ C}$$
The graph shows the electric charge on a charging capacitor in a simple RC circuit.

At time $t = 2\tau$, how much charge is on the capacitor?

\[q(t) = q_{\text{final}} \left(1 - e^{-t/\tau} \right) \]

\[q(t = 2\tau) = q_{\text{final}} \left(1 - e^{-2\tau/\tau} \right) \]

\[= q_{\text{final}} \left(1 - e^{-2} \right) \]

\[= q_{\text{final}} \cdot 0.86 \]

A. $0.14 \, q_f$
B. $0.37 \, q_f$
C. $0.63 \, q_f$
D. $0.79 \, q_f$
E. $0.86 \, q_f$
The Earth’s magnetic field near the surface can be approximated by the field of a bar magnet. In which direction would the magnetic north pole of Earth’s magnet point?

A. To the geographic north pole
B. To a point near the geographic north pole
C. To the geographic south pole
D. To a point near the geographic south pole
Magnetic Fields and Forces

- What produces magnetic fields \mathbf{B}?

(a) magnetic charges? (magnetic monopole)

$\text{No! Never have been found (nobody knows why they do not exist...)}$

\Rightarrow no individual "north" or "south" pole, always come in north-south pairs!

(b) Electromagnet:

\Rightarrow electric currents (moving charges) produce a magnetic field around them!

(c) Permanent magnet:

\Rightarrow elementary particles have an intrinsic magnetic field around them \Rightarrow magnetic fields of particles add up in certain materials \Rightarrow net magnetic field around the material
How can we detect a magnetic field \vec{B}?

- Recall: for electric fields \vec{E}: generates force on test charge q_e: $\vec{F} = q_e \vec{E}$

- for magnetic fields \vec{B}:

 (a) Torque τ on compass needle (bar magnet)

\Rightarrow In a magnetic field, the torque on a bar magnet tends to align the magnet with the direction of the \vec{B}-field!
(b) by the magnetic force \vec{F}_B exerted on a moving electric charge:

\[q \rightarrow \vec{v} \rightarrow \vec{B} \rightarrow \quad \vec{v} = 0 \quad \Rightarrow \quad \vec{F}_B = 0 \quad \text{change needs to move!} \]

\[q \rightarrow \vec{v} \rightarrow \vec{B} \rightarrow \quad \vec{v} \rightarrow \vec{B} \rightarrow \quad \vec{F}_B = 0 \quad \text{still no force if charge is moving in direction of } \vec{B} \]

\[q \rightarrow \vec{v} \rightarrow \vec{B} \rightarrow \quad \vec{v} \rightarrow \vec{B} \rightarrow \quad \Rightarrow \left| \vec{F}_B \right| = 1 q v \perp \mathbf{B} \]

component of velocity $\vec{v} \perp \vec{B}$
Magnetic Force on a moving charge \(q \):

\[
|F_B| = \frac{q |\vec{v}| \times |\vec{B}|}{c} \quad \vec{B} = \frac{\vec{v} \times \vec{B}}{v} \quad B \sin \phi = \frac{|\vec{v}| B \sin \phi}{v}
\]

with \(\phi \) : smallest angle between \(\vec{v} \) and \(\vec{B} \) (\(0 \leq \phi \leq 180^\circ \))

\[
\text{Unit of } B = \frac{|F|}{q |\vec{v}|} = \frac{N}{C \cdot m} = \frac{N}{A \cdot m} = 1 \text{ tesla} = 1 \text{T}
\]

\[
= 10^4 \text{ gauss}
\]