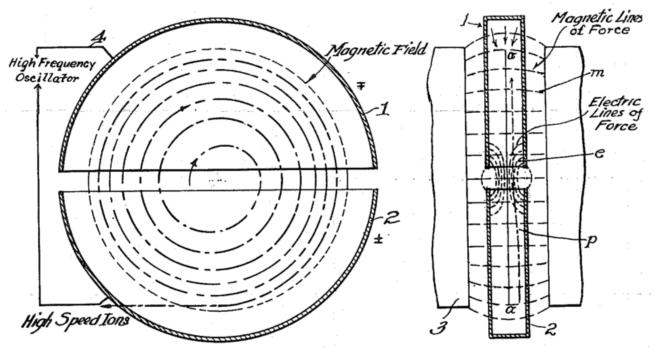

$$\frac{\text{Recap}}{e^{Recap}}$$
Lecture 14
• $R(\underline{circuit}:$
Changing:
 $e^{+} - \underbrace{(a-i)}_{R} = g_{1}(t=0) = 0$
 $e^{+} - \underbrace{(a-i)}_{R} = g_{1}(t=0) = 0$
 $q_{c}(\underline{t}) = CE[1 - e^{t/c}]$
 $q_{c}(\underline{t}) = q_{0}e^{-t/c}$
 $q_{c}(\underline{t}) = q_{0}e^{-t/c}$
 $q_{c}(\underline{t}) = q_{0}e^{-t/c}$
 $q_{c}(\underline{t}) = q_{0}e^{-t/c}$
 $q_{c}(\underline{t}) = \frac{dq}{dt} = \frac{e}{R}e^{-t/c}$
 $\Rightarrow i(\underline{t}) = -\frac{dq}{dt} = \frac{q_{0}}{Rc}e^{-t/c}$
• Mag netic Fields B:
- are produced by electromagnets (i.e. by moving
changes) and by permodent t magnets.
Move mag netic monopoles (changes) P


=) Magnetic Force on a moving charge q: mognetic p - B1 to D = B. Jin ø z BII to V $|F_{B}| = (q | v_{\perp t_{0} \overline{B}}) B = (q | v B sin \phi = |q| v B_{\perp t_{0} \overline{v}})$ with \$: mallst angle between i and B' (05\$ =110) =) this equation defines the magnetic fild B $\frac{\mathcal{U}_{mi}}{\mathcal{D}_{i}} \left[\mathcal{D} \mathcal{B} \right] = \frac{\mathcal{D} \mathcal{F}}{\mathcal{E} q \mathcal{I} \mathcal{D} \mathcal{I}} = \frac{\mathcal{N}}{\mathcal{C} \frac{m}{3}} = \frac{\mathcal{N}}{\mathcal{A} m} = \frac{\mathcal{I} \mathcal{L} \mathcal{S}}{\mathcal{I} \mathcal{A}} = \frac{\mathcal{I} \mathcal{T}}{\mathcal{I}}$ $= 10^{4} gauss$

Today:

- Magnetic field
- Magnetic field lines

- Charge moving in a uniform B-field
 - Particle accelerators: The cyclotron and synchrotron

A beam of electrons traveling directly towards you produces a bright spot when it hits a CRT screen.

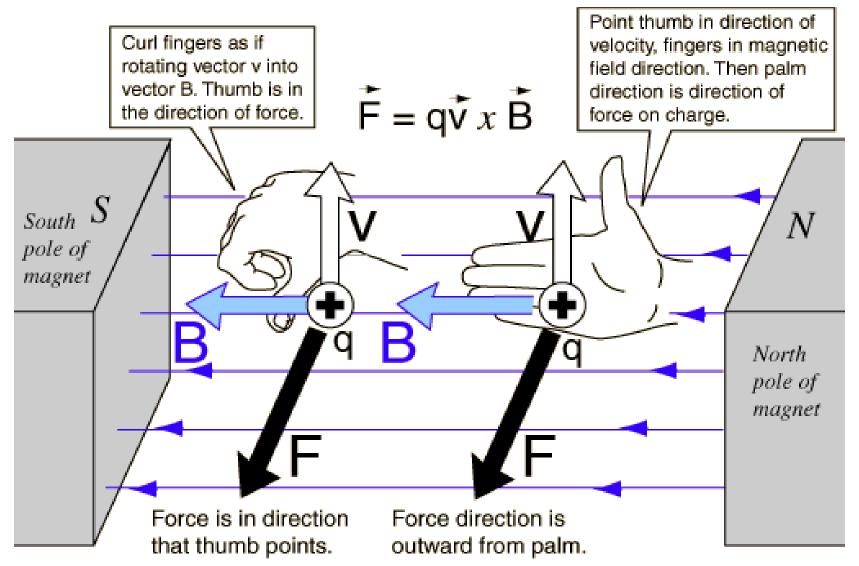
If a magnet with its north pole facing down is brought near the beam from above, which way will the spot on the screen move?

S

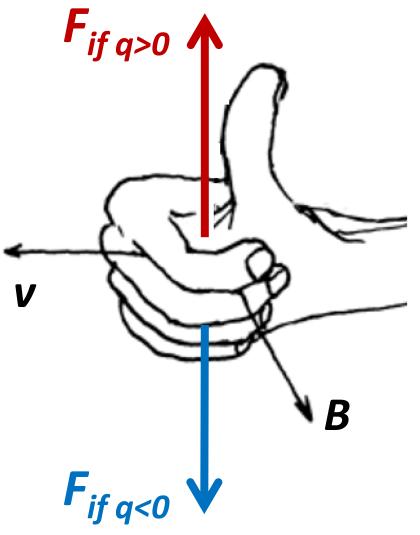
Ν

A. \uparrow B. \checkmark C. \leftarrow D. \rightarrow E. It won't move.

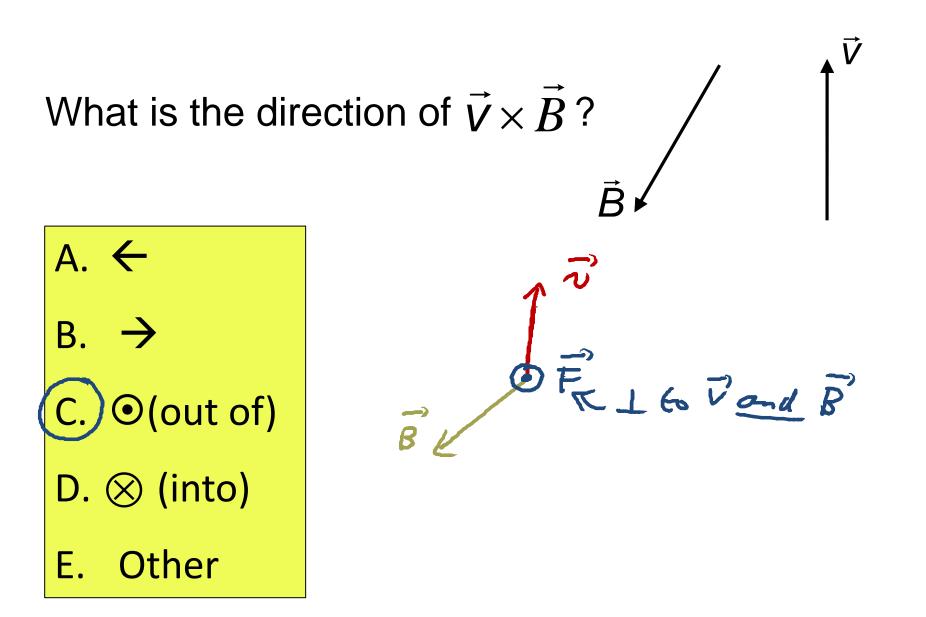
$$\frac{\text{Which way does } \overline{F_B} \text{ point?}}{Point}$$

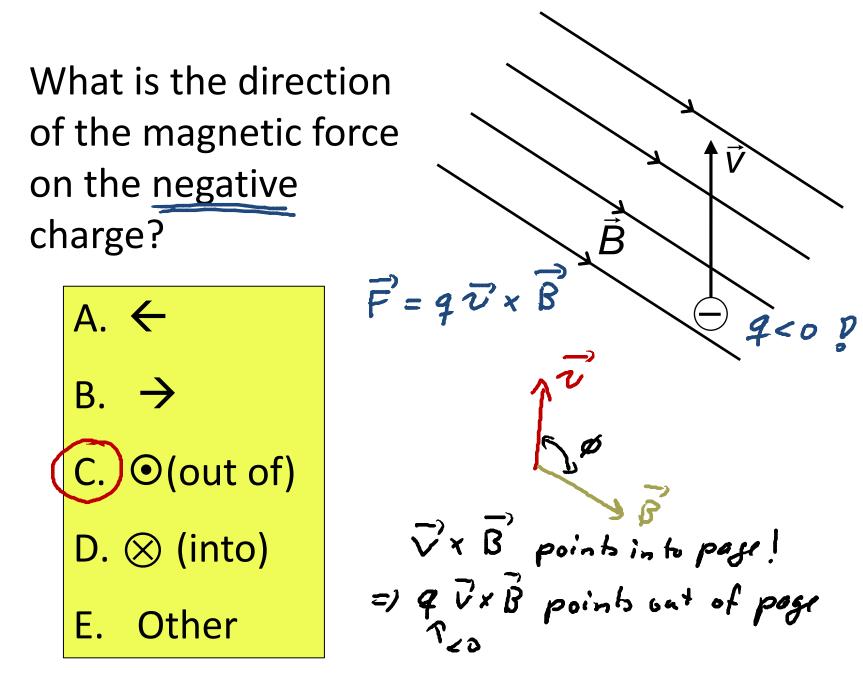

$$- \text{ magnitude of fore: } |F_B| = |q| \vee B \text{ sin } \emptyset$$

$$- \text{ Direction: } \overline{F_B} \text{ always point perpendicular to} \\ \text{ the velocity } \overline{V} \text{ and magnetic field } \overline{B}, \\ \text{ i.e. } \bot \text{ to plane defined by } \overline{V} \text{ and } \overline{B}, \\ \text{ in disction shown below:} \\ q > 0 \quad \overline{F_B} = q \quad \overline{V} \times \overline{B} = q \vee B \sin \phi \ \overline{n} \\ \text{ for the matricel show thand: } (rom - product of 2 vectors) \\ \text{ with wells of } \\ \text{ for the stand} \\ \overline{F_B} = q \quad \overline{V} \times \overline{B} = q \vee B \sin \phi \ \overline{n} \\ \text{ for the vector } \\ \text{ for the stand} \\ \text{ for$$

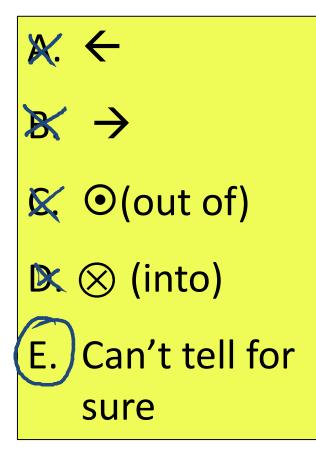

"Right Hand Rule":

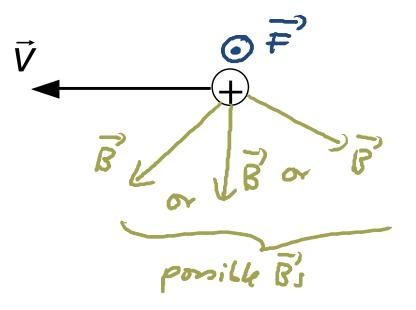
Must use your right hand! The figure below shows the


force for a positive charge, i.e. q>0!!

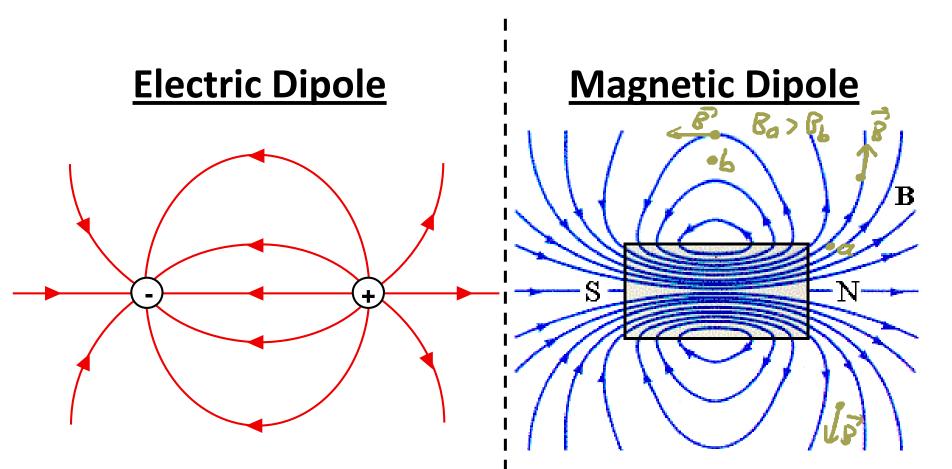


<u>"Right Hand Rule":</u> <u>Must use your right hand!!!</u>




- FINGERS of the right hand point in the direction of the FIRST vector (v) in the cross product,
- then adjust your wrist so that you can bend your fingers (at the knuckles!) toward the direction of the second vector (B);
- extend the thumb. If charge is positive the force is in direction that the thump points!
- If charge is negative, the force is opposite to direction that the thump points!

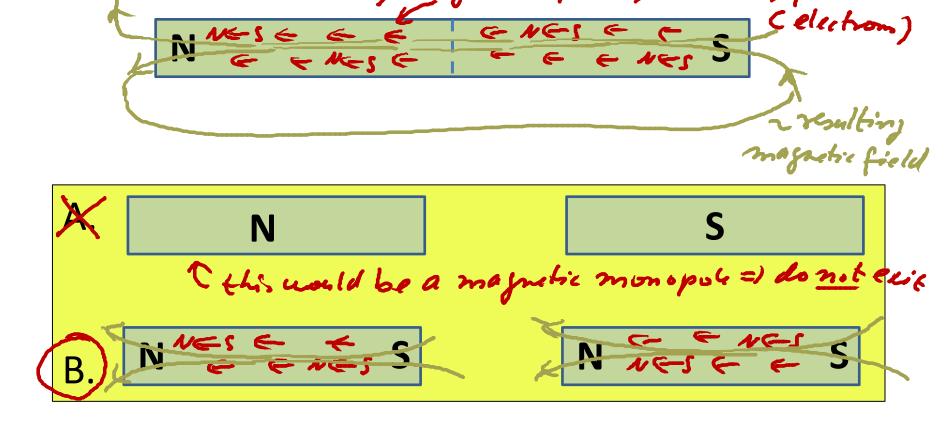
The magnetic force on the positive charge is directed out of the picture (\odot). What is the direction of the magnetic field?



Magnetic Field Line Model A way of visually representing a magnetic field (lines are not real!).

- 1. Magnetic field lines **point in the direction of the (total) magnetic field** at each point in space.
- 2. Magnetic field lines cannot cross.
- 3. The strength (magnitude) of the magnetic field at any place is proportional to the density of field lines there, i.e.,

$$B \propto \frac{(\# \text{ of field lines})}{(\text{area } \perp \text{ lines})}$$


4. Magnetic field lines never start nor end. They always form closed loops. This means that there are no isolated magnetic "charges" (monopoles). Magnetic "poles" always occur in N-S pairs.

Electric field lines go from positive to negative electric charge. Magnetic field lines never start nor end. They always form closed loops.

For Permanent Magnets: 1) "field line" emerge from one end: North pole ~> "field line" enter other End of magnet: South pole => Magnet has two pole => magnetic dipole ~ for multiple magnets S N S N · Opposite magnetic pols (Nond S) attract each other · Like magnetic poly (NandN F F F or S and S) repeleach other The stand

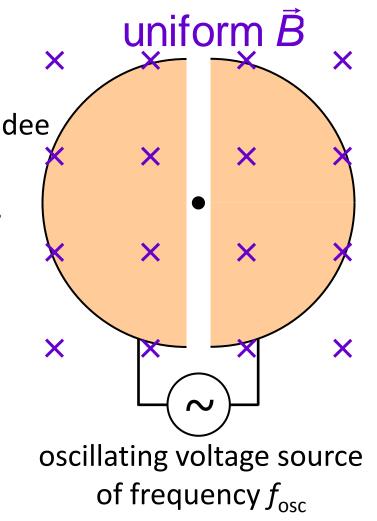
What do you get if you cut a bar magnet right in the middle into two parts?

A particle of mass *m* and charge q > 0 is moving with speed $v \perp$ to a **uniform magnetic field** *B*.

The particle follows a circular path in the field. $\vec{F}_{R}^{\perp} \vec{\upsilon} a luap ! \times xq > 0 \times$ ν V x How is the **radius** *r* of the particle's path related to its speed v? $\sum F_{mq} = F_{g} = ma = q \cup B = m \frac{\sqrt{2}}{r} = r = \frac{m \vee 2}{q B} \propto \frac{\sqrt{2}}{r}$ $r \propto v$ $X r \propto v^2$ $C. r \propto v^{-1}$ D. $r \propto v^{1/2}$ E. *r* does not depend on *v*

uniform

X


XI

Circulating Charged Particles Fp is I to 2 and Ballop - × X X =) charge is moving on Circular path her $|F_{B}| = m |a| =) |q| v B = m \frac{v^{2}}{r}$ × 970 FB -1 Zds? x a: $\frac{\sqrt{2}}{7}$ for circ. motion =) radius of circular path: $r = \frac{mv}{191B} = \frac{momentum p}{191B}$ uniform B-field; B' points into sufer -> Note: FB I Valuars! => FB + 60 path alwap! dW = F_B · ds =) Magnetic force F_B neve dos =) hec: = F_B ds cos 90° any work on movin, chaye? =) 072=0 = 0 シーレーニ イマート

Application: Particle Accelerators

The cyclotron:

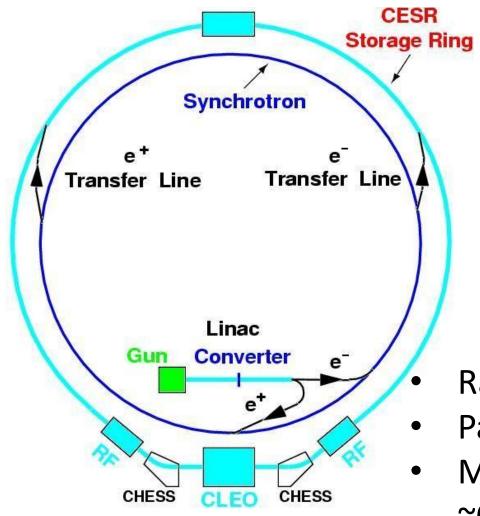
- Fixed magnetic field; changing orbit radius
- composed of two hollow copper <u>dees</u> that are immersed in a uniform magnetic field & connected to an oscillating voltage source.
- Particles (e.g., protons), each of charge q & mass m, start at a source near the center of the dees.

The Cornell Cyclotron

The Cornell cyclotron (2 MeV protons) was built about 1935 and decommissioned in 1956.

This photo with Assistant Professor Boyce D. McDaniel was taken in 1955.

Application: Particle Accelerators


The synchrotron:

- Fixed orbit radius; magnetic field adjusted for particle momentum/energy
- "Dipole magnets" keep particles on fixed orbit.

$$Radius = \frac{p(t)}{qB(t)} = \text{const.}$$

The Cornell Synchrotron

Radius = 122 m

- Particle energy: up to 5 GeV
- Magnetic bending fields: up to ~0.2 T (~3000* Earth's magnetic field)