<u>Recap I</u> Lecture 15 · Force by magnetic field on a moving charge: $\left|\vec{F}_{B}=q\left(\vec{\upsilon}\times\vec{B}\right)=q\upsilon\beta\sin\phi\vec{n}\right|$ 9>0 cross product of 2 vectors F(points out - F'B is always I to i and B of poge) - Direction is given by "Right - Hand-Rule". Watch out for sign of charge q ? - FB never does ony work on the charge: WFB = 0 (since it is always I to the path) · Magnetic field lines": - used to indicate magnetic fields Always form closed loops! - Emerge from "North pole" of a magnet and enter on the "South pole".

© Matthias Liepe, 2012

<u>Recap II</u>

· Magnets: - always have a south and north pole =) magnetir dipoles - Opposite magnetic poles attract each other - Like magnetic poles repel each other · Charge moving in a uniform magnetic field: =) Uni form circular motion; pose) Circula. $F_B = q B v \sin 90^\circ = ma = m \frac{v^2}{T}$ =) radius r of path = mu 191 B × 75× × 972

Today:

- Particle accelerators: The cyclotron and synchrotron
- Crossed electric and magnetic fields
 - Velocity selector
 - Hall effect
- Magnetic force on a current carrying wire
- Torque on a current loop

A particle of mass *m* and charge q > 0 is moving with speed $v \perp$ to a **uniform magnetic field** *B*.

How is the **period** *T* of the particle's orbit related to its $\times q^{2}$ speed v? Period = $T = \frac{2\pi r}{v} = 2\pi r \left(\frac{m}{|q|Br}\right) = \frac{2\pi m}{|q|B}$

=) frequency=
$$f = \frac{1}{T} = \frac{14/8}{2\pi m}$$

A. $T \propto v$ B. $T \propto v^2$ C. $T \propto v^{-1}$ D. $T \propto v^{1/2}$
E) T does not depend on v

Application: Particle Accelerators

The cyclotron:

- Fixed magnetic field; changing orbit radius
- composed of two hollow copper <u>dees</u> that are immersed in a uniform magnetic field & connected to an oscillating voltage source.
- Particles (e.g., protons), each of charge q & mass m, start at a source near the center of the dees.

The Cornell Cyclotron

The Cornell cyclotron (2 MeV protons) was built about 1935 and decommissioned in 1956.

This photo with Assistant Professor Boyce D. McDaniel was taken in 1955.

Application: Particle Accelerators

The synchrotron:

- Fixed orbit radius; magnetic field adjusted for particle momentum/energy
- "Dipole magnets" keep particles on fixed orbit.

$$Radius = \frac{p(t)}{qB(t)} = \text{const.}$$

The Cornell Synchrotron

Radius = 122 m

- Particle energy: up to 5 GeV
- Magnetic bending fields: up to ~0.2 T (~3000* Earth's magnetic field)

Crossed Electric and Magnetic Fields

Consider charged particle moving through aniform magnetic and elachic fieldyi = $\vec{F}_{E} = q \vec{E}$ $\vec{F}_{R} = q(\vec{v} \times \vec{B})$ Examples: - velocity selector - Man spectrometer - Hall effect

Velocity Selector:

A particle of mass *m* and charge q < 0 is moving with speed $v \perp$ to a uniform magnetic field B. By applying a uniform electric field E in the same region as the magnetic field, the particle can be made to move in a straight line with constant speed v.

What should be the direction of the electric field?

A. \wedge (B.) C. \leftarrow D. \odot (out of) E. \otimes (into)

Velocity Selector:

A particle of mass *m* and charge q < 0 is moving with speed $v \perp$ to a uniform magnetic field B. By applying a uniform electric field E in the same region as the magnetic field, the particle can be made to move in a straight line with constant speed v.

B. $q^2 v B$

X X X X X wont EF=0 =) $|F_{\mathcal{E}}| = |F_{\mathcal{P}}|$ $|q|E = |q| \cup B \sin go^\circ \Rightarrow |E = \cup B$

What should be the magnitude of the electric field?

D. –*mv*/(*qB*) E. *B*

Hall Effect:

X

Production of a voltage difference (the Hall voltage) across an electrical conductor, transverse to an electric current in the conductor and a magnetic field perpendicular to the current.

Х Clow potentie X Х $\Delta V_{\rm H} = E_{\rm H} d$ steady state: $F_{\rm E} = F_{\rm R}$ $J = ne U_d = i = ne U_d A$ + dlm; (; : chase comies per volume <u>i</u> evan = <u>i Bd</u> { can find number of charge evan e AOVH } comies per volume for measurable grantities! are of conductor

Magnetic Force on a Current Carrying Wire: ~ Consider a straight mine mith current den sitz J in constants magnetic field B: Uniform magnetic 1 10 1 970 =) external force on a given single charge 4 E 2 4 by the $\vec{B}' - f' \cdot ld$: $\vec{F}_B = q \vec{U} \times \vec{B}$ -) external force on all moving charges in wire of length L: volume ILI=LI - ruin FB, total = Qtotal · UxB=nLAj ZxB 1 aurent = LA J X B sine J=nq v hon-sect. 4 are A =) $\overrightarrow{F_B}$, total on = $\overrightarrow{L \times B}$ with length vector \overrightarrow{L} pointing in $\overrightarrow{L_m}$ is c -, A) = cummt i cerent, along wise

If current is sent through the Aluminum bar that's between the magnet poles in the direction shown, which way will the bar move? $\vec{F} = \vec{c} \cdot \vec{C} \times \vec{B}$

A. \uparrow B. \checkmark C. That bar won't move!