Recap I
－Torque on a Curet Loon：

$$
\left|\tau_{\text {on loop }}\right|=\mu B \sin \theta
$$

with magnetic dipole moment

i山分防

Lecture 17

force on strajithire：

$$
\vec{F}_{\text {win }}=i \vec{L} \times \vec{B}
$$

－Math： －dot product：

$$
\begin{aligned}
\vec{A} \cdot \vec{B} & =A B \cos \theta< \\
& =A_{11} B=A B{ }^{11} \\
\left|\vec{A} \times \vec{B}^{\prime}\right| & =A B \sin \theta \\
& =A_{\perp} B=A B_{\perp}
\end{aligned}
$$

Recap II

- Magnetic Fields due to Current:
 $d \vec{s}$ of mine:

$$
\begin{aligned}
& d \vec{s} \text { of wise: } \\
& d \vec{B}_{p}=\frac{\mu_{0}}{4 \pi} i \frac{d \vec{s} \times \hat{r}^{\leftarrow}}{r^{2}} \hat{\hat{r}}=\frac{\vec{r}^{2}}{|r|}
\end{aligned}
$$

$$
\mu_{0}=\text { permeability constant }=4 \pi \cdot 10^{-7 T} \mathrm{~m} / \mathrm{A}
$$

Right-hand rule: Point the thumb of your right hand in direction of the current. The fingers then reveal the B-field vector's direction.

Today:

- Magnetic field due to a current
- Field due to a circular arc I
- Field due to a straight wire
- Ampere's law

$\sum B_{\|} \Delta l=\mu_{0} I$

Example 1:
Magnetic field at Center of a Wire Loop due to a Current

\rightarrow magnetic fill d at center p due toloor section d \vec{s}; angle between,

$$
d B_{p}=\frac{\mu_{0}}{4 \pi} \frac{i d s}{R^{2}} \underbrace{\sin \theta}_{=1}=90{ }^{\ll} \mathrm{her}
$$

1) field by each ration ${ }^{=1}$ ss of 100 n hasthis magnitude at point P, and points in same division'

$$
\text { Cont of } \in 4 \text { page) }
$$

\Rightarrow totolfield at $P=$ sun of differential fields by all sections around

Pol $\vec{B}_{\substack{\text { Point out } \\ \text { of page }}}^{R}$

-> Magnetic field at Center

Circumference $=2 \pi R$

-> Magnetic field at Center of a circular Arc of Wire:
$\beta_{p}=\frac{\mu_{0} i}{4 \pi R} \phi \leftrightarrows$ in rad,
Arc length $=\phi \mathrm{R}$

Example 2:
Magnetic field due to a current in a long straight wire:
 (outside of wis only)

Top view:

$1 \xrightarrow{d s t} \in$ Point in

What is the direction of the magnetic field, $\vec{B}_{P, 1}$, at point P due to the current in wire section 1?
use Right - Hand-Rule or $d \overrightarrow{B_{p}}=\frac{\mu_{0}}{4 \pi} i \frac{d \vec{s} \times \hat{r}}{r^{2}}$

A. \odot (out of)
(B.) \otimes (into)
C. \uparrow
D. \downarrow
E. No field at P due to section 1.

What is the direction of the magnetic field, $\vec{B}_{\mathrm{P}, 2}$, at point P due to the current in wire section $\mathbf{2}$?

$$
d \vec{s}^{-1} \times \hat{r} \text { points into th page }
$$

A. \odot (out of) B. \otimes (into)
 C. \uparrow
 D. \downarrow
 E. No field at P due to section 2.

What is the direction of the magnetic field, $\vec{B}_{\mathrm{P}, 3}$, at point P due to the current in wire section $\mathbf{3}$?

$$
B_{p, 3^{*}}|d \vec{s} \times \hat{r}|=d s r \sin \theta^{<}=0
$$

Current-carrying wire:
What is the total magnetic field \vec{B}_{P} at point P due to the current in wire?

$$
\begin{aligned}
\left|B_{p}\right| & =\left|B_{p, b y 1}\right|+\left.\left|B_{p, b y z}\right| \quad i\right|^{V} \\
& =\underbrace{\frac{1}{2} \frac{\mu_{0} i}{2 \pi R}}_{\text {by } 1 / 2 \infty}+\frac{\mu_{0} i}{4 \pi R} \pi^{\ell}=\frac{\phi_{0} \pi \text { hes (1800): }}{\frac{\mu_{0} i}{4 R}\left(\frac{1}{\pi}+1\right)}
\end{aligned}
$$

unix

Consider two long wires running in parallel with current going through them in the directions shown below:

What is the direction of the magnetic field at wire \#2 due to the current in wire \#1?
A. \uparrow
B. \downarrow
C. \leftarrow
D. \rightarrow

Consider two long wires running in parallel with current going through them in the directions shown below:

What is the direction of the magnetic force on wire \#2 by the field caused by wire \#1?
A. \uparrow
B. \downarrow
C. \leftarrow
D. \rightarrow

Forces between two Parall el wire / currents:

\rightarrow magnetic field at position of win\# 2 by current in win \#1:

$$
\left|B_{b y \mid a t z}\right|=\frac{\mu_{0} i_{1}}{2 \pi d}
$$

A) resulting force on wis $\# 2$:

$$
\begin{aligned}
& \left|F_{\text {lon 2 } 2}\right|=i_{2} L B_{b \text { blat }} \underbrace{\sin 90^{\circ}}_{=1} \\
\Rightarrow & \left|F_{\text {ion } 2}\right|=\frac{\mu_{0} L i_{1} i_{2}}{2 \pi d}=1
\end{aligned}
$$

Direction: Parallel currents attract each offer: and an tiparalel currents repel each of the!

Next: Ampere's Law:

- ${ }^{s t} \overrightarrow{B_{B}}:$ Need to define circulation Γ of a \vec{B}-field:

some magnetic field (not necessarily uniform)
ins consider some imaginary closed
- poth in a gives magneto field
ins Then "walk" along the closed path and integrate over (sum un) the magnetic field component B_{11} pointing along the direction of the path, for one full turn.

