<u>Recap I</u> Lecture 17 0=angle · Torque on a Current Loop: botween B n and n IT on Loop 1 = M B sin O normal to + 10m with magnetic dipole moment u = A N i tums of coil/loop ament in wire of loop ora enclosed by the loop fore on straight wire : il AP: Fuix = i L × B · Math: - dot product: $\vec{A} \cdot \vec{B} = A B \cos \theta \leq$ = $A_{11} B = A B_{11}$ - cross product: $|\vec{A} \times \vec{B}| = A B \sin \theta$ 0= angle between A and B $= A_{I}B = AB_{I}$

Recap II Plane of · Magnetic Fields due to Cuments: \vec{r} and \vec{v} Moving electric => produces a magnetic change field around itself B = 0Magnetic fidd at point P: Bp = ZdBp = SdBp B=0. all along wire ds 1 with field by given section dis of wire: as of une: $dB_p = \frac{\mu_0}{4\pi}i\frac{ds \times \hat{r}}{r^2} = \frac{\hat{r}}{1r_1}^E$ Electric current Mo=pemerability constant=4x.1077m/A Magnetic field **Right-hand rule:** Point the thumb of your right hand in direction of the current. The fingers then reveal the B-field vector's direction.

Today:

 $\sum B_{\rm II} \Delta l = \mu_0 I$

- Magnetic field due to a current
 - Field due to a circular arc
 - Field due to a straight wire
- Ampere's law

Example 1:

Magnetic field at Center of a Wire Loop due to a Current

$$=) \begin{array}{c} B_{p} = \int \frac{M_{0}}{4\pi \tau} \frac{i}{R^{2}} \int \frac{dB_{p}}{dR} = \frac{M_{0}}{4\pi \tau} \frac{i}{R^{2}} \frac{ds}{sin\theta} = 90^{\circ}her$$

$$= \frac{1}{2} \int \frac{1}{2} \int \frac{dB_{p}}{dR} = \frac{M_{0}}{4\pi \tau} \frac{i}{R^{2}} \frac{ds}{sin\theta} = 90^{\circ}her$$

$$= \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} \int \frac{dB_{p}}{dR} = \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} \int \frac{dB_{p}}{dR} = \frac{1}{2} \int \frac{1}{2} \int \frac{dB_{p}}{dR} = \frac{1}{2} \int \frac{1}{2} \int \frac{dB_{p}}{dR} = \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} \int \frac{dB_{p}}{dR} = \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} \int \frac{dB_{p}}{dR} = \frac{1}{2} \int \frac{1}{2} \int$$

Circumference= 2 π R

Arc length = ϕ R

-> Magnetic field at Center of a Wire Loop:

-> Magnetic field at Center of a circular Arc of Wire:

pet in rod not deg 1

What is the direction of the magnetic field, $d\vec{B}_{\rm P}$, at point P due to the current at $d\vec{s}$? ds A. 个 B. ↓ R into page use night hand rule dBp ~ ds x r C. \odot (out of) (into) E. Can't tell

 \bigcirc

Example 2:

Magnetic field due to a current in a long straight wire:

ds t Poin What is the direction of the magnetic field, $B_{P,1}$, at point P due points to the current in wire section **1**? section of wire to Point p use Right - Hand - Rule or $dB_p = \frac{M_s}{4\pi} i \frac{ds \times \hat{\gamma}}{ds}$ ds'x ?: vector that points into the page

A. \odot (out of) B. \otimes (into) C. \uparrow D. \checkmark E. No field at P due to section **1**. What is the direction of the magnetic field, $\vec{B}_{\rm P,2}$, at point P due to the current in wire section **2**?

ds'x 2 points into the page

What is the direction of the magnetic field, $\vec{B}_{\rm P,3}$, at point P due to the current in wire section **3**?

$$B_{P,3} \ll |ds' \times \hat{r}| = ds \times sin \theta' = 0$$

1/2 2 1 ~ **Current-carrying wire:** What is the total magnetic field B_{P} at point P due to the current in wire? $\vec{B}_{p} = \vec{B}_{p,by1} + \vec{B}_{p,by2} + \vec{B}_{p,by3}$ point in some direction (into page) 0 1Bp1=1Bp, 67, 1+1Bp, 672] $=\frac{1}{2}\frac{\mu \cdot i}{2\pi R} + \frac{\mu \cdot i}{4\pi R}\pi = \frac{\mu \cdot i}{4R}\left(\frac{1}{\pi} + 1\right)$ by 1/2 00 lasin

Consider two long wires running in parallel with current going through them in the directions shown below:

2

 \leftarrow

use right hand rule

D. →

What is the direction of the magnetic **field at** wire #2 due to the current in wire #1?

 B, \checkmark

Consider two long wires running in parallel with current going through them in the directions shown below: $\vec{F}_{b,2,on1} = 1$ $\vec{F}_{b,2,on1} = 1$ $\vec{F}_{b,2,on1} = 1$

For wix = i L × B points along current disching What is the direction of the magnetic force on wire #2 by the field caused by wire #1?

Forces between two Porallel wires/currents: P: Front ~ magnetic field at position of win #2 by cerent in win #1: win HI $|B_{by|at2}| = \frac{\mu \cdot c_1}{2\pi d}$ SFIONE ~> resulting fory on wix #2: 42 is E Bby#1 at position of #2 |Fim2l= c2 L Bbylat2 Sin 90° =1 =) $|F_{10n2}| = \frac{\mathcal{M}_0 \mathcal{L} i_1 i_2}{2\pi d}$ - d Fionz Direction: Parallel currents attract thin #e Fro lach other; and an tipamalel amonts repel each other! at VBLy

Next: Amper's Lan: · 1 st: Need to define circulation T of a B-field: As consider some imaginary closed -poth in a given magnetic field O MA > Then "walk" along the closed X~ closed path and integrate over (sum up) patt the magnetic field component Bij Some magnetic field (not pointing along the direction of necessarily the path, for one full turm. Uniform)