Recap

- Magnetic field at center of circular arc of wise:

$$
B_{p}=\frac{\mu_{0} i}{4 \pi R} \phi^{\leftarrow} \stackrel{\text { angle in }}{\text { rad! }}
$$

- Magnetic field by an infinite straight mix:

$$
B_{p}=\frac{\mu_{0} i}{2 \pi R}
$$

- Forces between two parallel wins:

$$
\left|F_{\text {lon } 2}\right|=\left|F_{\text {zool }}\right|=|i \vec{L} \times \vec{B}|
$$

- Parallelcurnent $=\frac{\mu_{0} L i_{1} i_{2}}{2 \pi d}$
attract each of the
- bent parallel currents repel each otter

$$
\frac{3 D:}{\overrightarrow{F_{2}}}
$$

Lecture 18

Arc length $=\phi \mathrm{R}$

Today:

- Ampere's law
- Applications of Ampere's law
- Straight wire
- Solenoid

$\sum B_{\|} \Delta l=\mu_{0} I$

Next: Ampere's Law:

- ${ }^{\text {st }}:$ Need to define circulation Γ of a \vec{B}-field:

some magnetic field (not necessarily uniform)
ins consider some imaginary closed - poth in a gives magneto field (\sim) Then "walk" along the closed path and integrate over (sum un) the magnetic field component B_{11} pointing along the direction of the path, for one full turn.
\leadsto Break path into small path length element $d s_{i}$, with \vec{B}_{i} z cont over given path section
define: angh between , \bar{B}_{i} and $\overrightarrow{d_{i}}$

$$
\begin{aligned}
\Gamma & \equiv \sum_{\substack{i \\
\text { cloced } \\
\text { path }}} B_{11 \text { topath }} \cdot d s_{i}=\sum_{\substack{\text { cloced } \\
\text { pakk }}} B_{i} \cos \hat{\theta}_{i} d s_{i} \vec{B}_{i}^{\prime} \\
& =\sum_{i} \vec{B}_{i} \cdot d \vec{s}_{i}
\end{aligned}
$$

 S (alon, pars)

Ex.: Calculate Γ for a circular path

 centered around a long straight wire:

\vec{B} points along integration path at (Q $A \vec{B}$ each point on th path?

$$
\left.B_{11} \text { tod }{ }^{\text {s }}=|B|=\frac{\mu_{0} i}{2 \pi R}\right\} \text { from before }
$$

What is the component of \vec{B} along the direction of $d \vec{s}$?
A. $B_{s}=\mu_{0} /(2 \pi R)$.
B. $B_{s}=-\mu_{0} i /(2 \pi R)$.
C. 0.
D. It depends on where $d s$ is along the path.
E. Not enough information.

Ex.: Calculate Γ for a circular path centered around a long straight wire:
integration path
©

$$
\begin{aligned}
& \Gamma=\oint \vec{B} \cdot d \vec{s}=\oint B_{11 \text { tupats }} d s \\
& =\oint \frac{\mu_{0} i}{2 \pi / P} d s=\frac{\mu_{0} i}{2 \pi T} \widetilde{\mu_{0}} \widetilde{d_{s} d_{s} \operatorname{poth}} \\
& \Rightarrow \Gamma=\left(\frac{\mu_{0} i}{2 \pi R}\right)(2 \pi R)=\begin{array}{c}
\text { cost. along } \\
\mu_{0} i \text { closed pack }
\end{array}
\end{aligned}
$$

$T=\mu_{0} i$ terns out to be trans for any given magmatic field and any closed path? \Rightarrow Ampere' Law!

Ampere's law:

$$
\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{s}}=\oint B \cos \theta d s=\oint B_{\|} d s=\mu_{0} i_{\mathrm{enc}, \text { net }}
$$

where $i_{\text {enc, net }}$ is the net current enclosed by the closed path of integration and θ is the angle betwe $\vec{B} \mathrm{~B}$ and ds .

Use a right-hand rule to assign + or - signs to enclosed currents.

- "current enclosed by the closed path":
- current must pierce through imaginary surface that is completely bounded by the
closed integration path

Positive current
direction

- right-hand rule to find sign of current:
- Curl fingers of your right hand along the direction of the closed integration path. Then a positive current will run in the general direction of your thumb, while a current which runs in the opposite direction is negative.

Integration path direction

Applications of Ampere's law:

In certain cases, Ampere's law can be used together with symmetry arguments to find an unknown magnetic field.

- Magnetic field by a long, straight wire
- Magnetic field by a long solenoid

Consider a long, straight Wire:

- \vec{B} must be cylindrically symmetric here \Rightarrow could be (1),
- but aby: maspetir fief line (2), or (3)
- but abs: magnetic field lines must be clare loops \Rightarrow (3)

Which configuration of magnetic field along the integration path can be correct (use symmetry arguments)?
A. (1)
B. (2)
(C.) (3)
D. None of the above.

Applications of Ampere's Law:

Consider two long straight current-carrying wires as shown below:

What is the value of

$$
\oint \vec{B} \cdot d \vec{s}
$$

$i \odot$
watch out for
closed in tgrabion pats
for the path shown?

$$
\oint \vec{B} \cdot d \vec{s}=\mu_{\substack{\mu_{0} \\ \text { On wy current enclose } \\ \text { by pate count! }}}^{e_{\text {enc, net }}}=\mu_{0}(-i)
$$

$$
\begin{aligned}
& \text { onlycursint enclose } \begin{array}{l}
\text { forsignuse regex } \\
\text { by path cocenst! }
\end{array} \text { hond raki!! }
\end{aligned}
$$

A. $2 \mu_{0} i$
B. $\mu_{0} i$
(D.) $-\mu_{0} i$
E. Can't tell.
C. 0

Consider two long straight current-carrying wires as shown below:

What is the value of

$$
\oint \vec{B} \cdot d \vec{s}
$$

for the path shown?

$$
\oint \vec{B} \cdot d \vec{s}=\mu_{0} i e_{n_{1}, \text { mot }}=\mu_{0}(i-i)=\underline{0}
$$

$$
\begin{array}{|ll|}
\hline \text { A. } 2 \mu_{0} i & \text { B. } \mu_{0} i \\
\text { D. }-\mu_{0} i & \text { E. Can't tell. }
\end{array}
$$

C. 0

Applications of Ampere's Law:

Magnetic Field inside of a Long, straight Wire

 integration path

Wire, shown in cross section, carries a current i out of (\odot) the screen. Assume that the magnitude of the current density is constant across the wire. Because of the cylindrical symmetry, the only coordinate that B can depend on is $r . \Rightarrow B=B(r)=\operatorname{com} x$ abs: \vec{B} must point along cirularintigrotion path alost
$\Rightarrow \oint \vec{B}^{\prime} \cdot d_{s}^{\prime}=\oint B d_{s}=B \oint d_{s}=B(2 \pi r)=\mu_{0} i_{\mathrm{enc}}$

Magnetic Field inside of a Long, straight Wire

 integration pathWire, shown in cross section, carries a current i out of (\odot) the screen. Assume that the magnitude of the current density is constant across the wire.

What is the current enclosed by the integration path? have: $\$ \vec{B} \cdot d \vec{s}^{\prime}=B 2 \pi r=\mu_{0} i_{e r} \pi=\mu_{0} i \frac{r^{2}}{R^{2}}$ $i_{\text {enc }}=Y A_{\text {enclosed by pail }}=J \pi r^{2}$
$i_{\text {molal in }}^{\operatorname{mix}}=i=J \pi R^{2}$

$$
\left\{\begin{array}{l}
B=\frac{\mu_{0} i}{2 \pi R^{2}} r \propto r \\
\text { for } r<R \\
\text { (inside) }
\end{array}\right.
$$

$\begin{array}{lllll}\text { A. } i & \text { B. }-i & \text { C. } i r^{2} / R^{2} & \text { D. }-i r^{2} / R^{2} & \text { E. } i r / R\end{array}$

Magnetic field due to a circular current-carrying loop:

Applications of Ampere's Law: Magnetic Field inside a Solenoid

Magnetic Field inside a Solenoid

\Rightarrow for solenoid:

$$
\oint \vec{B}^{\prime} \cdot d \vec{s}^{\prime}=\underset{a}{B} \int_{a}^{b} d s=\underline{B h}=\mu_{0} i_{e_{n c}}=\mu_{0} n h i
$$

$\sin u$ Binsice x cons, and \vec{B} point along $d \vec{S}^{\prime}$

