Recap

- Magnetic field at center of circular arc of wire:
 \[B_p = \frac{\mu_0 i}{2\pi R} \phi \]
 \(\phi \) = angle in rad!

- Magnetic field by an infinite straight wire:
 \[B_p = \frac{\mu_0 i}{2\pi R} \]

- Forces between two parallel wires:
 \[|F_{1 \text{ on } 2}| = |F_{2 \text{ on } 1}| = |i_1 L^2 \times \vec{B}^'| \]
 \[= \frac{\mu_0 L i_1 i_2}{2\pi d} \]

- Parallel currents attract each other
- Anti-parallel currents repel each other

Arc length = \(\phi R \)
Today:

- Ampere’s law
- Applications of Ampere’s law
 - Straight wire
 - Solenoid

\[\sum B_\parallel \Delta l = \mu_0 I \]
Next: Ampère’s Law:

1st: Need to define circulation Γ of a \vec{B}-field:

\[\Gamma = \oint \vec{B} \cdot d\vec{s} \]

\(\sim \) consider some imaginary closed path in a given magnetic field

\(\sim \) Then "walk" along the closed path and integrate over (sum up) the magnetic field component $B_{||}$ pointing along the direction of the path, for one full turn.

Break path into small path length elements $d\vec{s}_i$, with $\vec{B}_i \cdot d\vec{s}_i$ count over given path section.
Define:

\[\Gamma = \sum_i B_{\| \text{to path}} \cdot ds_i = \sum_i B_i \cos \Theta_i \cdot ds_i \]

angle between \(\vec{B}_i \) and \(ds_i \)

\[= \sum_i \vec{B}_i \cdot ds_i \]

\[\Rightarrow \text{get integral around closed path} \]

\[\Gamma = \oint \vec{B} \cdot ds = \oint \vec{B} \cdot \cos \Theta ds = \oint B_{\|} ds \]

"closed path integral"

Component \(\parallel \) to path

\[S = \text{area "inside" contour} \]
Ex.: Calculate Γ for a circular path centered around a long straight wire:

<table>
<thead>
<tr>
<th>What is the component of \vec{B} along the direction of $d\vec{s}$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. $B_s = \mu_0 i/(2\pi R)$.</td>
</tr>
<tr>
<td>B. $B_s = -\mu_0 i/(2\pi R)$.</td>
</tr>
<tr>
<td>C. 0.</td>
</tr>
<tr>
<td>D. It depends on where $d\vec{s}$ is along the path.</td>
</tr>
<tr>
<td>E. Not enough information.</td>
</tr>
</tbody>
</table>
Ex.: Calculate Γ for a circular path centered around a long straight wire:

$$\Gamma = \oint \vec{B} \cdot d\vec{s} = \oint B_{||} \text{topath} \, ds$$

$$= \oint \frac{\mu_0 i}{2\pi R} \, ds = \frac{\mu_0 i}{2\pi R} \oint ds$$

$$= \Gamma = \left(\frac{\mu_0 i}{2\pi R} \right) (2\pi R) = \mu_0 i \text{ here}$$

$\Gamma = \mu_0 i \text{ turns out to be true for any given magnetic field and any closed path!}$

\Rightarrow Ampère's Law!
Ampere’s law:

\[\oint \mathbf{B} \cdot d\mathbf{s} = \int B \cos \theta ds = \int B_{\parallel} ds = \mu_0 i_{\text{enc, net}} \]

where \(i_{\text{enc, net}} \) is the net current enclosed by the closed path of integration and \(\theta \) is the angle between \(\mathbf{B} \) and \(ds \).

Use a right-hand rule to assign + or – signs to enclosed currents.
• “current enclosed by the closed path”:
 • current must pierce through imaginary surface that is completely bounded by the closed integration path

• right-hand rule to find sign of current:
 • Curl fingers of your right hand along the direction of the closed integration path. Then a positive current will run in the general direction of your thumb, while a current which runs in the opposite direction is negative.
Applications of Ampere’s law:

In certain cases, Ampere’s law can be used together with symmetry arguments to find an unknown magnetic field.

- Magnetic field by a long, straight wire
- Magnetic field by a long solenoid
Consider a long, straight Wire:

- \(\vec{B} \) must be cylindically symmetric here \(\Rightarrow \) Could be \(1 \), \(2 \), or \(3 \)
- but also: magnetic field line must be closed loops \(\Rightarrow \) \(3 \)

Which configuration of magnetic field along the integration path can be correct (use symmetry arguments)?

A. ① B. ② C. ③
D. None of the above.
Applications of Ampere’s Law:

Magnetic Field outside of a Long, straight Wire

- \mathbf{B} point along integration path:
 - $|B_r| = |B_{\parallel}| = \text{const along path}$
 - $\int B \cdot d\mathbf{s} = B \, ds$

Use Ampere’s Law:

- $\oint B \cdot d\mathbf{s} = \mu_0 i_{enc}$

- $\oint B \, ds = B \oint ds = \mu_0 i$

- $B = \frac{\mu_0 i}{2\pi r}$

For long wire, for $r > R$ (outside of)
Consider two long straight current-carrying wires as shown below:

What is the value of

\[\oint \mathbf{B} \cdot d\mathbf{s} \]

for the path shown?

\[\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 \ i_{\text{enc}, \text{net}} = \mu_0 (-i) \]

only current enclosed by path counts!

A. $2 \mu_0 i$
B. $\mu_0 i$
C. 0
D. $-\mu_0 i$
E. Can’t tell.
Consider two long straight current-carrying wires as shown below:

What is the value of

\[\oint \vec{B} \cdot d\vec{s} \]

for the path shown?

\[\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{\text{enc.,mt}} = \mu_0 (i - i) = 0 \]

A. \(2\mu_0 i\)
B. \(\mu_0 i\)
C. 0
D. \(-\mu_0 i\)
E. Can’t tell.
Wire, shown in cross section, carries a current \(i \) out of (\(\bigodot \)) the screen. Assume that the magnitude of the current density is constant across the wire.

Because of the cylindrical symmetry, the only coordinate that \(B \) can depend on is \(r \).

\[B = B(r) = \text{const} \]

\(\mathbf{B} \) must point along the circular integration path along the path.

\[\oint \mathbf{B} \cdot d\mathbf{s} = \oint \mathbf{B} ds = B \oint ds = B(2\pi r) = \mu_0 i \text{enc} \]
Magnetic Field inside of a Long, straight Wire

Wire, shown in cross section, carries a current i out of (\bigcirc) the screen. Assume that the magnitude of the current density is constant across the wire.

What is the current enclosed by the integration path?

$$B = \frac{\mu_0 i \cdot \pi}{2 \pi R^2}, \quad \text{for } r < R \quad \text{(inside)}$$

A. i B. $-i$ C. ir^2/R^2 D. $-ir^2/R^2$ E. ir/R
Magnetic field due to a circular current-carrying loop:
Applications of Ampere’s Law:

Magnetic Field inside a Solenoid

\(\mathbf{B}_{\text{inside}} \) is strong and uniform inside of solenoid.

\(\mathbf{B}_{\text{outside}} \times 0 \) outside.

helical coil of wire
Magnetic Field inside a Solenoid

\[\mathbf{B}_i \text{ (out of)} \]

\[\mathbf{B}_f \text{ (into)} \]

Integration Path

\[\mathbf{B}_\text{inside} \]

\[\mathbf{B}_\text{outside} \]

\[\mathbf{A}_m \text{ per 'L'aw: } \oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 i_{enc} \]

\[= B \cdot h \]

\[\Rightarrow i_{enc} = \frac{\mu_0 B h}{l} i \]

\# of terms per length of solenoid

\[\oint \mathbf{B} \cdot d\mathbf{s} = \oint \mathbf{B}_\text{inside} \cdot d\mathbf{s} + \oint \mathbf{B}_\text{outside} \cdot d\mathbf{s} \]

\[= 0 \]

\[= 0 \]

\[= 0 \]
\[= \text{for solenoid:} \]
\[\oint \mathbf{B}' \cdot d\mathbf{s}' = B \int ds = Bh = \mu_0 i_{enc} = \mu_0 n i \]

\[\text{since } B_{\text{inside}} \text{ is const., and } \mathbf{B}' \text{ points along } d\mathbf{s}' \]

\[\Rightarrow B_{\text{inside of solenoid}} = \mu_0 n i \]

\[n = \frac{\# \text{ of turns}}{\text{Unit length of solenoid}} \]