	<u>Recap</u>		Lecture 19
· Imperis Law:	relates cum	int to magnetic	field it produces
$\oint \vec{B} \cdot d\vec{s} = \oint B d\vec{s}$	$\cos\Theta ds = g$	Bitts porth ds =	M. i en not
poth			
integration path can have any shape, but must be closed.	3D: 10000	his - watch ou rign of ce hand rul	et for correct mast (use sight-
· Magnetic Cold La	Vicoth	- Only in clu s enclosed by	de currents completely the integration pots
$ B = \frac{M \cdot i}{2\pi R^2} \tau \text{ for}$	r < Rwix	B Jar a -	topview:
181 = Mo/2π 1/2 for • Magnetic field by	r > Muin a long sold	moid: Ruire	~ >116 Ruin @ @@@@@@
Binside = Mo solenoid	int n=# o sole	f turns of noid per length	0000000

Today:

- Magnetic materials
- Change in magnetic flux and Faraday's law of induction
- Lenz's law

Magnetic Materials

• Ferromagnetic:

- Examples: Iron, nickel...
- Divided into regions ("domains") in which atomic magnetic dipoles line up
- If placed in an external magnetic field: dipoles of domains line up in direction of magnetic field
 - -> material develops a strong magnetic dipole moment in direction of the applied external magnetic field
- The dipole moment alignment ("magnetization") partially persists when the external field is removed -> permanent magnet

In bulk material the domains usually cancel, leaving the material unmagnetized.

Iron will become magnetized in the direction of any applied magnetic field. This magnetization will produce a magnetic pole in the iron opposite to

> that pole which is nearest to it, so the iron will be attracted to either pole of a magnet.

That's why a magnet sticks to a steel refrigerator door...

Example: Hard disk drive

• **Diamagnetic:**

 Atoms have no permanent dipole moments, but weak magnetic dipole moments are produced in the atoms when placed in an external magnetic field

> ->Create a very weak magnetic dipole field in opposition to an externally applied magnetic field

• Dipole moments and net field disappear when external magnetic field is removed

• Paramagnetic:

- Atoms have permanent dipole moments, but are randomly oriented
- When placed in an external magnetic field, dipoles partially align in direction of the field

->Create a net magnetic dipole field in direction of the externally applied magnetic field

Alignment and net field disappear when external magnetic field is removed

Example: Levitation of a Frog on a strong Magnetic Field

- A live frog levitates inside a 32 mm diameter vertical bore of a solenoid in a magnetic field of about 16 T.
- Why?
 - Diamagnetism of the frog
 - Magnetic dipole moment of frog opposes B_{ext} -> repulsive force!

Magnetic Induction.

N So fai:

• electric charge moving => force F'= q J'x B' in a magnetic field

moving electric charge => produces a magnetic field
around itself
$$d\vec{B} = \frac{Mo}{4\pi} : \frac{d\vec{S} \times \vec{T}}{\vec{T}}$$

Examples of Magnetic Induction: C N SI moving magnet <u>change</u> in magnetic flux going through the loop 2 conductions Isop induces emf/ current in the loops ammeter -) current 11 moving coil of wire through 1 9~ 100p localited magnetic field change in magnetic flux through the loop induses an f/unent in the loop

TI changing flux througs won =) induces emf/ by changing area or orientation (cerent in the of the loop in B-Field x x x x x BXXXXXX \langle × × × × × expand and * * | / * * flather loop Notice: changes "number of field lines" at magnetic flux \$8 going through the conduction logs rotating coil N magnetic flux through coil changes mith fine 151 induces emf/ current in coil rotate coil =) llestric generator V

Quantitative Treatment: Define magneter flux Jg (magneter flux through) at (number of field lines) area A going through area A) Angle between B and A A E vector of mognitude A that is perpendicular to area A e B $(mib: E E_B J = T m^2 = | webs = | W_b$

~) for more general cosi: non-flat surface and/or non-uniform field: break accointo small sections with B'= const and sum up / integrate over all contributions to the total flux:

Faraday's Law of Induction: (rele at which the external magnetic) (emf induced in a (conduction 100p)= - (flux \$B,ext through that loop 3D: Assume ext Best increases with time changes with time Ed & B, ext Bert =) DBject E **[E]=volk** Orea A enclosed by A loop Einduced dt E can be positive or negative रति न जिस्ते द =) sign tells you which may cumpt flows in the loop: Conduction Cinduced its or Eti B induced 3 produced by for coil with N tumo: $\left(\mathcal{E} = -N d\Phi_{B} / dt \right)$ induced .