Recap I

Lecture 22

· Inductors:

- produce a well defined magnetic field in a specific region - Circuit symbol: - mon - Inductorie L: $L = \frac{\sqrt{2}B}{i} = \frac{\int lux linkage}{Cernest} [L] = \frac{Tm^2}{A} = H$ d: #oftums = Henry = Henry- for a solenoid: =Henry l < length of solenoid - Self-induced ems: The emf acts to oppose I the change that produces it! if current in a coil changes, on emfisindered ji (increasing) i (decreasing) LITEL $\mathcal{E}_{L} = \mathcal{E}_{self-induced} = -L \frac{di}{dt}$ と乳を Potential change over inductor: | DVL | = EL

© Matthias Liepe, 2012

Today:

- Energy density of a magnetic field
- Alternating current
 and power
 - Transmission lines and transformers
- Ideal LC circuit

RL circuit:

Power supplied and dissipated in the circuit

Loop rule give: $\mathcal{E} = iR + L \frac{di}{dt} \left(\mathcal{E} - iR - L \frac{di}{dt} = 0 \right)$ Multiply both 7 equation of side by : $Ei = i^2 R + i L \frac{di}{dt}$ conservation of current i power supplial enegy/power in Powe RL Circuit 67 64 this term must be dissipated battery the power delivered to 57 the vistor the inductor 1

$$=)\left(\begin{array}{c} powe \ delived \\ b \ inductor \end{array}\right) = \left(\begin{array}{c} rate at which the magnet \\ polential \ energy \ \mathcal{U}_{B} \ is \\ stored \ in the magnetic \\ field \ of \ the \ inductor \end{array}\right) = \frac{d\mathcal{U}_{B}}{dt}$$

$$= \frac{d\mathcal{U}_{B}}{dt}$$

$$= \frac{d\mathcal{U}_{B}}{dt}$$

$$= \frac{d\mathcal{U}_{B}}{dt}$$

$$= \frac{d\mathcal{U}_{B}}{dt} = \frac{d\mathcal{U}_{B}}{dt}$$

$$= \frac{d\mathcal{U}_{B}}{dt}$$

=) Energy stored in the magnetic field of an inductor: $U_B = \frac{1}{2}Li^2$ Magnetic fields have stored lenerg?

$$\frac{\operatorname{Energy} \operatorname{density} \circ f a \operatorname{magnetic} \operatorname{field}:}{\operatorname{Energy} \operatorname{density} = u_{B} = \frac{U_{B}}{\operatorname{volume}} = \frac{\sqrt{2}Li^{2}}{AL} A \int_{00000}^{00000} B = M_{0}\frac{N}{e}i$$

$$\operatorname{for Solenoid} = \operatorname{Elength} \circ f Solenoid = \operatorname{For Solenoid} I = \operatorname{For Solenoid} I$$

At time t = 0the switch is moved to position a.

After t = 0, how does the power delivered to the inductor's magnetic field vary with time? $P_{to inductor} = i \int_{at}^{at} \int_{at}^{at} f_{t=0} : i = (a + a + b) = 0$

A. It starts low & steadily increases.
B. It starts high & steadily decreases.
C. It starts low, then increases until it reaches a peak, & then decreases.
D. It's constant. E. It oscillates.

Why is power transmitted at very high voltages in power transmission lines (several 100,000 volts)?

A. Because it reduce the energy lost in longdistance transmission

B. Because it maximized the power that can be transmitted

C. Because it is easier to generate high voltages

<u>Alternating current (ac):</u>

· Direct current (dc): flow of electric charge carries is only only in one direction; le non - oscillating · Alternating current (ac): movement of electric charge carriers philodically reverses direction -) oscillating ems and current Example: Household voltage in North America: $\mathcal{E}(t) = \mathcal{E}_{max} \sin(2\pi f t) = \mathcal{E}_{max} \sin(\omega t)$ Varis sinusoidally ! Emer t Emer t Emer t with Emex = 1702 and f= 60 Hz =) $T = \frac{1}{f} = \frac{1}{60} J$

$$\sum_{i=1}^{n} Consider circuit describing a device with resistance R plugged into a power outlet: resistance R plugged into a power outlet: $e^{-\Delta V_R = 0} = 0$

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=$$$$

now: Calculate power dissipated in the resistor R
from before:
$$P = i^2 R = j$$
 for ac: $P = i_{mes}^2 \sin^2(\omega t) R$
Paus $find a very:$
Paus $find a ver$

Mote:
- in U.S.:
$$E_{rms} = \frac{E_{max}}{Vz} = \frac{170V}{Vz} = 120V$$

- Voltmeters, ammeters, etc... read rms values of ac
currents
- Powe transmission line:
Powe transmission line have resistance R
=) powe lost in transmission
Pavs, lost = $i_{RAS} R$
=) need to keen current low in line!
Powe delivered by Powe plant/transmission
Pavs, delived = $E_{rms} i_{rms} = Pavy, lost = {Pavy, ed/R_{rms}} R$
=) high voltage $E_{rms} = 1$ low current i_{rms}
=) reduce powe lost in transmission line ?

Electrical transmission system:

