Recap
Lecture 28

- Seometrical Optics:
- Valid for (1) Light beams with width $\gg \lambda_{\text {light }}$
(2) Objects with size $\gg \lambda_{\text {i.jat }}$
\Rightarrow Light travels in straight lines (rays) through
vacuum and homogeneous material
- Speed of Light:
- Reflection and Refraction:

incident normal reflectal -Law of Reflection: $\theta_{1}{ }^{\prime}=\theta_{1}$,
ray

- Low of Refraction: $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$ (Snell', Lan)
- Note: all angles are relative to $t 4$ normal!

Today:

- Reflection and Refraction
- Polarization
- Chromatic dispersion
- Rainbows
-Images

An inferior mirage on the Mojave Desert
(image seen is under the real object)

- A inferior mirage occurs when the air near the ground is much warmer than the air above
- In this case the light rays are bent up and so the image appears below the true object
higher $T \Rightarrow$ lower den sigh
\Rightarrow lowe $n \Rightarrow$ heigk $v_{\text {wave }}=\frac{s}{n}$

An superior mirage

(image seen is above the real object)

- A superior mirage occurs when the air below the line of sight is colder than that above (temperature inversion)
- In this case the light rays are bent down and so the image appears above the true object
$n_{1} \sin \theta_{1}$
$=n_{3} \sin \theta_{3}$

B

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

$$
n_{1}<n_{2}<n_{3}
$$

$$
\begin{aligned}
& n_{2} \sin \theta_{2}=n_{1} \sin \theta_{3, p} \\
& \mathbb{U 1} \\
& n_{1} \sin \theta_{1}=n_{3} \sin \theta_{3, B} \\
& \Rightarrow \operatorname{same}!
\end{aligned}
$$

The angle θ_{1} is the same in both cases \mathbf{A} and \mathbf{B}. $\theta_{3, A}=\theta_{2, B}$ For case \mathbf{B}, how does the angle $\theta_{3, \mathbf{B}}$ that the ray makes with a normal to the interfaces when it's in the medium with refractive index n_{3} compare with $\theta_{3, \mathrm{~A}}$?
A. $\theta_{3, \mathbf{B}}<\theta_{3, \mathbf{A}} \quad$ B. $\theta_{3, \mathbf{B}}=\theta_{3, \mathbf{A}} \quad$ C. $\theta_{3, \mathbf{B}}>\theta_{3, \mathbf{A}}$
D. It depends on the thickness of medium 2.
if $n_{2}>n_{1} \Rightarrow \theta_{2}<\theta_{1}$ if $n_{2}<n_{1} \Rightarrow \theta_{2}>\theta_{1}$

\Rightarrow If θ_{1} is incrased, eventuall, $\theta_{2} \rightarrow 90^{\circ}$: at: $\theta_{1}=\theta_{c}$

$$
\sin \theta_{2}=\underbrace{\frac{n_{1}}{n_{2}}}_{\text {cinge }} \sin \theta_{1}
$$

This value of θ_{1} is in ${ }^{\text {sin }} 90^{\circ}=2 i n \theta_{2}=1$ icritical anyle: $\sin \theta_{c}=n_{2} / n_{1}$
\Rightarrow for $\theta_{1}>\theta_{c}$. No refracted ray?
 $=\frac{\text { all }}{r \text { flectedent light is }}$ reflected!
"Total internal reflection"
for $\theta_{1}>\theta_{c}=\arcsin \left(\frac{n_{2}}{n_{1}}\right)$
(only for case where $n_{2}<n$,

$$
\left.\infty \frac{n_{2}}{n_{1}}<1\right)
$$

Application of total internal reflection: Optical fibers

Optical fibers typically include a transparent core surrounded by a transparent cladding material with a lower index of refraction. Light is kept in the core by total internal reflection. This causes the fiber to act as a waveguide.

A right-angle isosceles prism can be used to redirect a high-power laser beam that would destroy a normal silvered mirror.

As shown in the figure, the beam enters the prism normal to one of its equal sides. In order for this to work, the refractive index of the prism must be greater than a particular value. What is this value? \Rightarrow need: $\frac{n_{\text {air }}}{n_{p}}<\sin 45^{\circ}$

$$
\begin{aligned}
\Rightarrow n_{p_{\text {riom }}}>n_{\text {air }} / \sin 45^{\circ} & =\sqrt{2} \\
& =1.41
\end{aligned}
$$

| A. 2.00. B. 1.73. | C. $1.41 . \quad$ D. 1.33. E. 1.15. |
| :---: | :---: | :---: | :---: | :---: |

Polarization in Reflection and Refraction

In general, light reflected from an interface is partially polarized. At one particular incidence angle θ_{B} (the Brewster angle), the reflected light is completely polarized. For light incident at the Brewster angle, the reflected \& refracted rays are \perp to each other.

Chromatic dispersion:

Normal (\perp) to interface

$$
\begin{aligned}
& \text { Incident white light } \\
& n_{2}\left(>n_{1}\right) \\
& \theta_{2} \text {, Refole } 0_{0,1}
\end{aligned}
$$

Refractive index n depends on the wavelength λ (or frequency f) of the light. Generally \boldsymbol{n} is greater for a shorter wavelength.
-> \ln general, n (violet) $>\boldsymbol{n}$ (red)

Rainbows:

Secondary rainbow:

Water drops

Images:

- Light rays diverge from an object in all directions.
- We 'see' the object because some
 of these rays enter our eyes
- We perceive the rays as coming straight from the location of the object / image.
- Real images: Perceived location of image is actually a point of convergence of the rays of light that make up the image
- Virtual images: Rays only appear to diverge from a point on the image.

Real image

Real rays do converge at location of image (can put a screen at location of image and form the image)

Virtual image

Rays only appear to converge at location of image (your brain thinks the image is at this location, but it is not real)

Image formation by a plane (flat) mirror:

A six foot tall man wants to buy a (plane) mirror that will allow him to see all of himself at once.

What must be the (approximate) minimum length of the mirror?
A. $3 \mathrm{ft} \quad$ B. 6 ft
$\begin{array}{ll}\text { C. } 9 \mathrm{ft} & \text { D. } 12 \mathrm{ft} \\ \text { 8. Depends on how far in } \\ \text { front of the mirror the } \\ \text { man plans to stand. }\end{array}$

