Recap I	Lecture 29
· Total Internal Reflection: (for n2 < n, on	17!)
for $\theta_i > \theta_c = \operatorname{arcsin}\left(\frac{n_c}{n_i}\right)$	m, 0,70
· Polarization by Reflection:	Unpol plane pol incide from reflected
at Brewster angle: $\theta_1 = \theta_B = \arctan\left(\frac{n_2}{n_1}\right)$ - $\theta_1 + \theta_2 = g_0^\circ$	$\frac{\theta_{B}}{\eta_{2}} = \frac{\theta_{B}}{\eta_{2}} = \frac{\eta_{C}}{\eta_{2}}$
· Chromatic Dispension:	white light partially - pol. Pol. Pol. Pol. Pol. Pol. Pol.
for height frequency (shote wavelength	r_1

<u>Recap II</u>

Images:
Real image: Location of image is actually a point of convergence of the light rays.
Virtual image: Rays only appear to diverge from a point on the image.
Plane Mirror:

- Object distance
$$p = -image distance i$$

- Lateral magnification m:
 $m = \frac{image height}{object height}$
 $cynight image : m > 0$
 $inverted image : m < 0$
 $mivror$

Today:

Mirrors and Lenses

Lunar Laser Ranging Experiment

- Measures the distance between the Earth and the Moon using laser ranging.
- Lasers on Earth are aimed at retroreflectors planted on the Moon during the Apollo program, and the time for the reflected light to return is determined.
- Round-trip time of about 2½ seconds
- Average distance of Earth to Moon: about 384,467 kilometers
- Measured with near mm precision!
- Finding: The Moon is spiraling away from Earth at a rate of 38 mm per year

Laser Ranging Facility at the Geophysical and Astronomical Observatory at NASA's Goddard Spaceflight Center in Greenbelt, Md.

Array of Corner Reflectors on the Moon

Corner reflector

Always reflects waves back directly towards the source!

Mirrows: Locating Images by Drawing Rays (1) Ray that is initially parallel to F F the central ax's reflects along the "focal point line". (2) A ray that reflects from the F. . . F. mirror after "paning" through the focal point emerges parallel to the cantral aris. (3) A ray that reflects from the "s" "s" mirror at point "s" is reflected symmetrically about the center Gris. (4) A ray that reflects from the

Images from Mirrors : Convex mirror: f<0 Concave mirror: 570 f=focal length P = object hol C h: I real image distance I image F C imagr distance p70 チフロ p>0 (20) {Č(U) 5<0 - <u>Sign convention</u>: • f>O for concare mirror; f<0 for convex mirror - for both case: (for any mirror) i = image height 1 + 1 = 1 Latral magnification = m = -P i \$ m70: uprijkt image P object height meo: in what image

Thin lenses:

-Lens deflab the im -Comming light ray by angle & that is proportional to offset h of the ray from Central axis $|\alpha| = |P|hcf$ deflating "Im pow angle in $[P] = \frac{1}{m} = diopter$ rab

from top figure on previous page:

$$\begin{aligned}
& tan \alpha = \frac{h}{f} \approx \alpha = Ph \\
& for small angle: tand x \alpha
\end{aligned}$$

$$=) lans powe $P = \frac{1}{f} = \frac{1}{focal legth} \\
=> tronge lens: larger lens powe IP | \\
& shorte focal legth f
\end{aligned}$$$

Conversing Lens: 520 : Diversing Lens: -Seo scal focal point Central ali そくの for both: focal length of lens (for this lens in air) focal plan $\frac{1}{x} = (n-1)\left(\frac{1}{\gamma_1} - \frac{1}{\gamma_2}\right)$ radius of curvature of lens surface r: surface near object 72: othe side