Recap I
Lecture 31

- Image from thin Lenses:
converging


$$
\frac{1}{p}=\frac{1}{i}+\frac{1}{f} \quad m=\frac{\text { image height }}{\text { object height }}=-\frac{i}{p}
$$

diverging


- Thin lensein contact:

$$
\begin{aligned}
& \left.\frac{1}{f_{\text {eff }}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}\right\} \text { focal length } \\
& \text { Matthias Liege, } 2012
\end{aligned}
$$

Recap II

- Interference: - result of over lapping (EM) waves
- need to add up fields of individual wave
- For two $E M$ waves: (of equal frequency, amplitude, polarization)


Construe Give Jots ference:

$$
\begin{array}{r}
\text { for phat } \begin{array}{r}
\Delta \phi=\phi_{2}-\phi_{1}=m(2 \pi) \\
m=0, \pm 1, \pm 2, \ldots
\end{array} .
\end{array}
$$



Destructive Inter ference:

$$
\left\{\begin{array}{c}
\text { for phone } \\
\text { difference: } \frac{\Delta \phi=\phi_{2}-\phi_{1}=\left(m+\frac{1}{2}\right)(2 \pi)}{m=0, \pm 1, \pm 2, \ldots}
\end{array}\right.
$$

Phase difference between two wave may be caused by path length difference.

$$
\Delta \Phi=\frac{2 \pi}{\lambda} \text { ( } \Delta \text { path length) }
$$

## Today:

## - Interference



Constructive


Destructive


Phase shift between two waves may be in traduced when the waves coming from a source travel along paths of differing lenghts before arriving at a common location:

$\Rightarrow$ path length difference of the two waves $=2 \Delta x$
$\Rightarrow\left(\frac{\text { phase difference of the two }}{\text { waves at location of receiver }}\right)=\Delta \phi=\frac{2 \pi}{\lambda}(2 \Delta x)$
Note: both waves started out in phase at the tramsuitte
$\Rightarrow$ Constructive Interference, if:

$$
\Delta \phi=\frac{2 \pi}{\lambda} 2 \Delta x=m(2 \pi) \Rightarrow \begin{aligned}
& \Delta p a t h=2 \Delta x=m \lambda \\
& \text { with } m=0, \pm 1, \pm 2 \ldots
\end{aligned}
$$

$\Rightarrow$ Destructive Inter ference, it

$$
\Delta \phi=\frac{2 \pi}{\lambda} 2 \Delta x=\left(m+\frac{1}{2}\right)(2 \pi) \Rightarrow \begin{aligned}
& \Delta \text { path }=2 \Delta x=\left(m+\frac{1}{2}\right) \lambda \\
& \text { with } m=0, \pm 1, \pm 2 \ldots
\end{aligned}
$$

and Example.
Consider two sources of EM waves, emitting wave that are in phase and have equal amplitude, fruguency, and polarization:


In the foll owing: Assume that receiver is for away:

$$
D \gg d \quad D \gg \lambda
$$


nearly, parallel rays
if $D \gg d$
$\Rightarrow \Delta r=$ pot the two waves $=d \sin \theta$
At distant receive:
Constructive Intel feeze, if: $\Delta \phi=\frac{2 \pi}{\lambda} \Delta p a t h=\frac{2 \pi}{\lambda}$ or
(maxima of intensity,)

$$
=\frac{2 \pi}{\lambda} d \sin \theta=m(2 \pi)
$$

Destructive Into forence, if:

$$
\begin{aligned}
& \Rightarrow \theta_{\text {cont }}=\sin ^{-1}\left(m \frac{\lambda}{d}\right) \\
& \Delta \phi=0, \pm 1, \pm 2 \ldots \\
& \Delta \phi=\frac{2 \pi}{\lambda} d \sin \theta=\left(m+\frac{1}{2}\right)(2 \pi) \\
& \Rightarrow \theta_{d s t}=\sin ^{-1}\left[\left(m+\frac{1}{2}\right) \frac{\lambda}{d}\right] \\
& m=0, \pm 1, \pm 2 \ldots
\end{aligned}
$$

$\Rightarrow$ Intensity measured at receive:


## Interference between two point sources



## Optical interference between two point sources

 for different wavelengths and source separations Shorter wavelength

Two vertical electric dipole antennas located 300 m apart transmit radio waves of wavelength $\lambda=100 \mathrm{~m}$. Each antenna transmits the same power in every horizontal direction.

Suppose that the electric currents in the antennas that produce the waves are in phase with each other.

A detector is moved around a circle of radius 100 km from the midpoint between the antennas.

At how many points along the entire circle would intensity maxima be detected?
A. 8
B. 10
C. 12
D. 14
E. 16
formaxima:

$$
\begin{aligned}
& \lambda=100 \mathrm{~m} \\
& d=300 \mathrm{~m}
\end{aligned}
$$

constrective in te ference

$$
\begin{aligned}
& \sin \theta_{\cos t}=m \frac{\lambda}{d} \\
& \sin \theta_{0}=0 \frac{\lambda}{d}=0 \\
& \sin \theta_{1}=1 \frac{\lambda}{d}=\frac{1}{3} \\
& \sin \theta_{2}=2 \frac{\lambda}{d}=\frac{2}{3} \\
& \sin \theta_{3}=3 \frac{\lambda}{d}=1 \\
& \sin \theta_{4}=4 \frac{\lambda}{d}=\frac{4}{3}>1
\end{aligned}
$$


$\Rightarrow 12$ maxima!

Huygens' Principle:
Method for deter mining how wave fronts propagate (Christian Huygens, 1678):

- All points on a wavefront serve as a point source of spherical secondary wavelets.
- After a time $t$, the new position of the wavefront will be that of a surface that is tangent to these secondary wavelets.
- wavefront: curer formed by points in a wave that have the sam phase.

Exandes:

Plane Wave:

spherical Wave:


Double Slit Interference:
Consider a plane wave incident on a barrier that haw two vel narrow hols/slit:
ingoing plane

very narrow slits behave like two point sources $\Rightarrow$ get inteferene from two point sources as before
$\Rightarrow$ from above for two point socercs:
Angles of constructive Interference (maxima):

$$
\sin \theta_{\text {comotructioe }}=m \frac{\lambda}{d} \quad m=0, \pm 1, \pm 2 \ldots
$$

Angles of destructive Interference (minima):

$$
\sin \theta \text { destructive }=\left(m+\frac{1}{2}\right) \frac{\lambda}{d} \quad m=0, \pm 1, \pm 2 \ldots
$$

Interference between waves from two narrow slits

$\checkmark$


