Recap I

Sources of phase shift between two waves: $\Delta \Phi_{A,B} = \Phi_B - \Phi_A$

1. Waves start out with different phases.
2. Path length difference: $\Delta \Phi = \frac{2\pi}{\lambda} (\Delta \text{path length})$
3. Waves travel through mediums with different index of refraction: $\lambda = \frac{\lambda_{\text{vacuum}}}{n}$
4. Phase shift upon reflection

<table>
<thead>
<tr>
<th>Reflection Type</th>
<th>Phase Shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>slow \rightarrow fast</td>
<td>0</td>
</tr>
<tr>
<td>$n_{\text{incident}} > n_{\text{transm.}}$</td>
<td>π</td>
</tr>
<tr>
<td>fast \rightarrow slow</td>
<td>0</td>
</tr>
<tr>
<td>$n_{\text{incident}} < n_{\text{transm.}}$</td>
<td>π</td>
</tr>
</tbody>
</table>

© Matthias Liepe, 2012
Recap II

- Thin-Film Interference:

Total phase shift between reflected waves A and B results from:
- Path length difference = 2L
- Different wavelength in film: \(\lambda_f = \frac{\lambda_{\text{vacuum}}}{n_f} \)
- Phase shifts upon reflection

\[2L \text{ constructive, } m = (m + \frac{1}{2}) \frac{\lambda_{\text{vacuum}}}{n_{\text{film}}} \quad 2L \text{ destructive, } m = m \frac{\lambda_{\text{vacuum}}}{n_{\text{film}}} \]

\(m = 0, 1, 2, \ldots \)

Air \(n=1 \) → Coating \(n_f \) \(\xrightarrow{L} \) Glass \(n_g = 1.5 \)

Anti-reflective Coating on Glass:
- Choose \(L \) to get destructive interference between waves A and B for visible light:
 \[2L \text{ destructive, } m = (m + \frac{1}{2}) \frac{\lambda_{\text{vacuum}}}{n_{\text{film}}} \quad m = 0, 1, 2, \ldots \]
Today:

- Diffraction
 - Single slit
 - Circular aperture
 - Double slit (again)
What is the smallest object (finest detail) the human eye can resolve?

What is the smallest object (fine detail) the human eye can resolve?

What is the smallest object (fine detail) the human eye can resolve?

What is the smallest object (fine detail) the human eye can resolve?

A. ~1 mm
B. ~0.5 mm
C. ~0.05 mm
D. ~0.005 mm

~0.01° angular resolution

=) ~0.05 mm at near point distance of 25 cm
Diffraction:

Wavefronts are ‘bent’ near edges & apertures.

Example: Diffraction of wave passing through a narrow slit:

Recall: Huygens' Principle

All points on a wavefront act as point sources

⇒ Light emerges in all directions rather than just passing straight through the narrow slit.

⇒ Important for aperture/objec/slit of size ≤ λ.
Example: Single-slit diffraction:

Mask with slit (top view).

Key idea: waves from each part of the slit can interfere with others.

→ Interference pattern by single slit observed on screen.
Single slit diffraction:
Single-slit diffraction pattern
Interference Pattern from a Single Slit:

- Break slit into N zones, each of width a/N
- Rays from different zones interfere on distant screen

Path length difference between two adjacent rays:

$$\Delta \text{path} = \frac{a}{N} \cdot \sin \theta$$

Phase difference between waves of adjacent rays:

$$\Delta \phi_{\text{adjacent rays}} = \frac{2\pi}{\lambda} \Delta \text{path} = \frac{2\pi}{\lambda} \frac{a}{N} \sin \theta$$
Side Note:

Phasors

- **To add two waves:**

 \[E(t) = E_{\text{max}} \cos(\kappa x_0 - \omega t + \phi) \]

- \[E_{\text{sum}} = 0 = E_1(t) + E_2(t) \]
2 turns:
\[\Delta \phi_{\text{total}} = \sum \Delta \phi_{\text{adjacent}} \]
\[E_{\text{total}} = 2 \cdot (2\pi) \]

\[E_{\text{total}} = \sum \Delta \phi_{\text{adjacent}} \]
\[E_{\text{total}} = 2\pi \]

E from individual ray

E_{\text{total}} (\theta = 0)

E_{\text{total}} (\theta)

Full circle!
Constructive Interference at highest intensity at $\theta = 0$

Dark Fringes (Intensity minima) each time the electric field vectors of the individual waves add up to zero:

$$\Rightarrow \text{ for } \phi_{\text{total}} = \sum_{i=1}^{N} \phi_{i, \text{adjacent ray}} = m (2\pi)$$

$$m = \pm 1, \pm 2, \pm 3, \ldots$$

but not $m = 0$

$$\Rightarrow \phi_{\text{total}} = N \cdot \phi_{\text{adjacent ray}}$$

$$= N \cdot \frac{2\pi}{\lambda} \frac{a}{N} \sin \theta = m (2\pi)$$

Minima for single slit diffraction:

$$a \sin \theta = m \lambda$$

$m = \pm 1, \pm 2, \pm 3, \ldots$ (but not $m = 0$)

width of slit
Also can find the single-slit diffraction intensity pattern: \(I(\theta) \propto (E_{\text{cutoff}})^2 \)

\[
I(\theta) = I_{\text{max}} \left(\frac{\sin \alpha}{\alpha} \right)^2
\]

where \(\alpha = \frac{\pi a}{\lambda} \sin \theta \)

Note: Wider slit (larger \(a \)) \(\rightarrow \) more, sharper intensity maxima and minima

Minima: \(\sin \theta_{\text{min}} = m \frac{\lambda}{a} \leq 1 \)
Single-slit diffraction pattern for different slit widths:

\[\frac{\lambda}{a} = 1/1 \]

\[\frac{\lambda}{a} = 1/2 \]

\[\frac{\lambda}{a} = 1/4 \]

\[\frac{\lambda}{a} = 1/8 \]
Diffraction of red laser beam on a Hole (Circular Aperture)
Diffraction by a circular Aperture

Interference of waves diffracted by the hole results in circular intensity pattern on the screen.

$$\sin \theta_1 = 1.22 \frac{\lambda}{a}$$

$$a = \text{diameter of hole}$$