Recap
Lecture 34

- Diffraction: Apparent "bending" of waves around small obotalles/edges/aperturs.
- Single slit Diffraction:

- Diffraction by Circular Aperture:

$1^{\text {st }}$ intensity minimum at:

$$
\sin \theta_{1}=1.22 \frac{\lambda}{a}
$$

diameter of "aperture

Today:

- Diffraction
- Diffraction limited resolution
- Double slit (again)
- N slits
- Diffraction gratings
- Examples

Diffraction-I imilted Reoolution:

\Rightarrow Rayleigh's criterion: diffraction potten of othe source

\Rightarrow for snall $\Delta \theta$: Jmags of th tmo socures con no longer be resolved onthe ocreen!

Pointillism

- Technique of painting in which small, distinct dots of pure color are applied in patterns to form an image.
- At normal viewing distance, the dots are irresolvable, and thus blend.

Revisit: 2-slit Interference

Look at the case where the screen is far away: $D \gg d \& D \gg \lambda$.

From before: Interference maxima where the path length difference is:

$$
\Delta r=d \sin \left(\theta_{m}\right)=m \lambda, m=0, \pm 1, \pm 2, \ldots
$$

But, the slits have some finite width a !
\Rightarrow The intensities of these interference maxima are modulated by an 'envelope' single-slit diffraction function.
$N=2 . \lambda=600 \mathrm{~nm} . d=9000 \mathrm{~nm} . a=2400 \mathrm{~nm}$.

Actual patterns are the pink curves.

$$
N=\text { 2. } \lambda=600 \mathrm{~nm} . d=9000 \mathrm{~nm} . a=1200 \mathrm{~nm} .
$$

Single-slit diffraction envelope:

Minima:

$\sin \left(\theta_{m}\right)=m \lambda / a, m \neq 0, m= \pm 1, \pm 2, \ldots$
Here a is the slit width.
d) a

N-slit Interference

N-slit Interference

Interference minima:

Interference minima occur where sotal widk of $\sin \left(\theta_{s}\right)=s \lambda /(N d)$,
$s \neq 0, s= \pm 1, \pm 2, \ldots$, except when s / N is an integer (position of principal maxima). Here d is the spacing between slit centers, and \mathbf{N} is the number of slits.
-> ($N-1$) minima between any two consecutive principal maxima.

N-slit Interference

N-slit Interference

N-slit: Effect of increasing N

N-slit: Effect of increasing slit width a

$$
N=6 . \lambda=600 \mathrm{~nm} . d=9000 \mathrm{~nm} . a=1200 \mathrm{~nm} .
$$

$$
N=6 . \lambda=600 \mathrm{~nm} . d=9000 \mathrm{~nm} . a=2400 \mathrm{~nm} .
$$

$\lambda / a=1 / 4$

Actual patterns are the pink curves.

Single slit envelope functions are the blue curves.

In the following equations, d represents center-to-center slit spacing, a represents slit width, λ represents the wavelength of normally incident plane waves, and N represents the \# of slits.
(1) $d \sin \theta_{m}=m \lambda \quad m=0, \pm 1, \pm 2, \ldots$
(2) $d \sin \theta_{m}=\left(m+\frac{1}{2}\right) \lambda \quad m=0, \pm 1, \pm 2, \ldots$
(3) $a \sin \theta_{n}=n \lambda, n= \pm 1, \pm 2, \ldots$
(4) $N d \sin \theta_{s}=s \lambda, s= \pm 1, \pm 2, \ldots$ except when s / N is an integer
Which of the above gives angles of intensity principal maxima?
(A.) (1).
B. (2).
C. (3).
D. (4).
E. None of the above.

In the following equations, d represents center-to-center slit spacing, a represents slit width, λ represents the wavelength of normally incident plane waves, and N represents the \# of slits.
(1) $d \sin \theta_{m}=m \lambda \quad m=0, \pm 1, \pm 2, \ldots$
(2) $d \sin \theta_{m}=\left(m+\frac{1}{2}\right) \lambda \quad m=0, \pm 1, \pm 2, \ldots$
(3) $a \sin \theta_{n}=n \lambda, n= \pm 1, \pm 2, \ldots$
(4) $N d \sin \theta_{s}=s \lambda, s= \pm 1, \pm 2, \ldots$ except when s / N is an integer
Which of the above gives angles of intensity subsidiary maxima?
A. (1).
B. (2).
C. (3).
D. (4).
E. None of the above.

In the following equations, d represents center-to-center slit spacing, a represents slit width, λ represents the wavelength of normally incident plane waves, and N represents the $\#$ of slits.
(1) $d \sin \theta_{m}=m \lambda \quad m=0, \pm 1, \pm 2, \ldots$
(2) $\left.d \sin \theta_{m}=\left(m+\frac{1}{2}\right) \lambda \quad m=0, \pm 1, \pm 2, \ldots\right\}$ for 2 - sint
(3) $\left.\operatorname{a\operatorname {sin}} \theta_{n}=n \lambda, n= \pm 1, \pm 2, \ldots\right\}$ for single slit diffraction
(4) $N d \sin \theta_{s}=s \lambda, s= \pm 1, \pm 2, \ldots$ except when s / N is an integer $\}$ for N_{-}
Which of the above give(s) angles of intensity minima?

Diffraction gratings:

Have a very large number N of equally spaced slits. Interference maxima are very narrow and occur where

$$
\sin \left(\theta_{n}\right)=n \lambda / d, \quad n=0, \pm 1, \pm 2, \ldots
$$

where d is the distance between slit centers.
For a given value of n, different wavelengths will diffract at different angles and, because the maxima are very narrow, gratings can be used to analyze the wavelength composition of light.

CD as Diffraction Grating: Interference

- The tracks of a compact disc act as a diffraction grating
- Nominal track separation on a CD is 1.6 micrometers, corresponding to about 625 tracks per millimeter.
- This is in the range of ordinary laboratory diffraction gratings.
- For red light of wavelength 600 nm , this would give a first order diffraction maximum at about 22°

In the following equations, d represents center-to-center slit spacing, a represents slit width, λ represents the wavelength of normally incident plane waves, and N represents the \# of slits.
(1) $d \sin \theta_{m}=m \lambda \quad m=0, \pm 1, \pm 2, \ldots$
(2) $d \sin \theta_{m}=\left(m+\frac{1}{2}\right) \lambda \quad m=0, \pm 1, \pm 2, \ldots$
(3) $a \sin \theta_{n}=n \lambda, n= \pm 1, \pm 2, \ldots$
(4) $N d \sin \theta_{s}=s \lambda, s= \pm 1, \pm 2, \ldots$ except when s / N is an integer
Which of the above could be used to derive an expression for the angular width of a principal maximum of a diffraction grating?

$$
\begin{array}{ll}
\text { A. (1). } & \text { B. (2). } \\
\begin{array}{ll}
\text { C. (3). } & \text { D. } \\
\text { (4). }
\end{array} \\
\text { E. None of the above. }
\end{array}
$$

D: ffraction grating: Width of Limes:

- For N-slits: Interference minima at

$$
\sin \theta_{s}=\frac{s \lambda}{N d} \quad s= \pm 1, \pm 2 \ldots \text { evert } s=0
$$

- At $S_{n}=n N$: get $n^{\text {th }}$ principle maximum:

$$
\sin \theta_{n N}=\frac{n N \lambda}{N d}=x \frac{\lambda}{d} \rightarrow \text { maxima! }
$$

- Minima that border the n^{3+4} princip $n=0 \pm 1, \pm 2 \ldots$ minim drat:

$$
\sin \theta_{n N \pm 1}=\frac{(3 N \pm 1) \lambda}{N d}
$$

\Rightarrow find:

$$
\underbrace{\sin \theta_{n N+1}-\sin \theta_{n N-1}}_{\Delta \sin \theta}=[n N+1-(n N-1)] \frac{\lambda}{N d}=\frac{2 \lambda}{N d}
$$

- finally, use:
$\cos \theta=\frac{d(\sin \theta)}{d \theta} \approx \frac{\Delta \sin \theta}{\Delta \theta}$ for $\operatorname{sinall} \Delta \theta$
- this gins:

$$
\begin{aligned}
& \text { this gin: } \\
& \sin \theta_{n v+1}-\sin \theta_{n N-1}=\frac{2 \lambda}{N d} \approx(\overbrace{\theta_{n v+1}-\theta_{n v-1}}^{\infty \theta}) \cos \theta_{n}
\end{aligned}
$$

\Rightarrow full width of $n^{4 h}$ maximum:

$$
\begin{aligned}
\text { width }=\Delta \theta=\theta_{n N+1}-\theta_{n N-1} & \approx \frac{2 \lambda}{N d \cos \theta_{n}}<{\text { angle of } n^{t h}}_{\text {principal }} \\
\text { lory } N & \Rightarrow \text { navrour lines nation un n }
\end{aligned}
$$

Giant Blue Morpho

- Some butterflies have the most striking iridescent blue wings, such as the blue morpho of South America
- Blueness in butterflies is caused by optical interference.
- The scales have multilayering that reflects light waves so that they travel different distance

Iridescence

- Iridescence is an optical phenomenon of surfaces in which hue changes in correspondence with the angle from which a surface is viewed
- Caused by multiple reflections from two or more surfaces in which phase shift and interference of the reflections modulates the incidental light.

X-ray (Bragg) Diffraction:

- \quad X rays are EM waves whose wavelengths are $\lambda \sim 1 \AA=10^{-10} \mathrm{~m}$.
-> $\lambda \sim$ atomic diameters.
- In a crystalline solid the regular array of atoms forms a 3dimensional "diffraction grating" for x rays.

X-ray (Bragg) Diffraction (cont.):

- If an x-ray beam is sent into a crystal it is scattered (redirected) by the crystal structure.
- In some directions scattered waves undergo destructive interference resulting in intensity minima.
- In other directions scattered waves undergo constructive interference resulting in intensity maxima.
- This scattering process is complicated but intensity maxima turn out to occur in directions as if the incoming x rays were reflected by a family of parallel reflecting planes that extend through the atoms within the crystal \& that contain regular arrays of the atoms.

X-ray (Bragg) Diffraction:

\Rightarrow for con stract tive inteference: $2 d \sin \theta=n \lambda$
\Rightarrow madima at: $\underbrace{\sin \theta_{\text {maxima }}=\frac{n \lambda}{2 d}}_{\text {Bragg's Law }} n=1,2,3 \ldots$

Bragg Diffraction

- Diffraction from a three dimensional periodic structure such as atoms in a crystal is called Bragg diffraction.
- Each dot in this diffraction pattern forms from the constructive interference of X-rays passing through a crystal.
- The data can be used to determine the crystal's atomic structure.

X-Ray Diffraction at Cornell: CESR/CHESS

High-energy X-ray diffraction was used to pinpoint some 5 million atoms in the protective protein coat used by hundreds of viruses.

Credit: J. Pan \& Y.J. Tao

