Re<u>cap I</u> Lecture 37 · Evidence of Photons: The Photoelectric Effect as = e DV stop data are not explained by clamical EM wave model DYmer = e DV Stop -v Photon E:hfly pe-So E cutoff friquency clean metal (dep ents on target) => Photon model: $E_{Ph} = hf = \chi_{max} + \phi$ max. Kinche cone jy of photo electrons work function of · Photon en legis: taget material -visible light: 700nm < 2 % 400nm = min i mun en egy 1.8er & Eph & J.lev to know on - ultro wolet : 400 mm & 2 % 10 mm electron from the 3.1eV & Eps & lover tayst matchial - X - 7071: 2210 m => EYL 21001V C Sew EV © Matthias Liepe, 2012

Recap II · Evidence of Photons: The Compton Effect Collision of a photon with a free electron Before collision: Athe Colligion: scattered photon \rightarrow λ' Erx = hc/2, scattering elastic collision photon e at rest (pholon sives $\lambda \sim \sim \gamma$ part of its PT anju Em= he Ker, ito enery to the Se-Peri = 0 free electron) $P_{m} = b/\lambda$ Xe; 5 > 0 12' >2) (Pe, s/>0 Photons carry energy and momentum, Key Idea: and obey energy and momentum conservation laws.

Photons:

- X-ray production
- Spectroscopy and spectra

Continuous Spectrum

Emission Lines

Absorption Lines

Compton Effect: Conservation of energy and momentum in collision of a photon with a free electron gives conat value for navelength 2' of scattered photon at angle \$: scattering $\lambda' - \lambda = o\lambda = \frac{h}{m_ec} (1 - cos \phi) = 20$ wavelength mansof electron inifial shifkd wave legt after scattering ヨ のえ(タ=の)=0 Dλ (β=180°) = Dλmax = 24 x0.0049mm mic =) need x-rays to observe this small shift!

If one doubles the wavelength of the incoming light, the Compton shift $\Delta\lambda$...

Why, in Compton scattering, would you expect $\Delta\lambda$ to be independent of the scatter material?

Photon Model for X-Ray Production: X-ruys relative Intensity ___evacuated tube "characterstic hate contin uvers " lines" " l (depend on (ayet materia) metal tayet (Bremsstrahlung) · 2 min K zinden. of target mate acceleration vultage (many KV) material =) Electron with keV kinetic energy collides (interact) target atom アズーのス with target atoms and may lose part (or all) 2 photon incident of its enersy by generating dection ЗYo an x-ray photon. Eps=hf (Kinche enty) ミロン

=) for energy conservation
(neglect eV-scale energy from work function
of target material here)

$$E_{photon} = hf = \frac{hc}{\lambda} = 0 \mathcal{R} = \mathcal{R}_{o}$$

=) $\lambda \ge \frac{hc}{\mathcal{R}_{o}}$ get continuous spectrum
above λ_{min}
 $\lambda_{min} = \frac{hc}{\mathcal{R}_{o}}$ minimum weevelength of
continuous spectrum

Quantum Mechanis:

non

Lesion II: Small particles I wave properties at smull scale -> energy quantization if particle is confined to a small volume Example: The quantized atom

Spectroscopy:

What can be learned about a substance (atom) from the light it limits or absorbs? =) Use diffraction grating to separate light into its component wavelengths: n=0 (uhik) Primary mexima; プニー m=1 $d\sin\theta_n = n\lambda$ かこりさしきて... where n= order number d = centr - to - centr - grating spacing of slibs 117 1134+

Continuous vs. Line Spectra

- A glowing solid produces a continuous spectrum from the material as a whole.
 - Example: filament in a light bulb

- A glowing gas at low pressure produces a characteristic line spectrum of specific wavelengths doe to the emission form individual atoms or molecules
 - Example: Emission spectrum of hydrogen

• Example: Emission spectrum of iron

=) Radiation emitted by independent atoms shows shorp spectral lines apply conservation of energy to the atom

» Fi - Es = E photon = hf =) Jey Jdea: - Atoms exist in stak of db crete quantized internal energy - associate energy of emitted photons as difference between two quantized energy staks of the atom!

· Energy level diagram for a siven atom:

energy 1 _____ guantized energy levels (states) f de given atom => only these energy levels are possible

· Photon emission:

· Photon abrorption:

 $E_{i} = E_{i} = E_{i}$

Notes Photon is only absorbed, if Ephoton = E some final state - Einitial state of atom of atom of atom

Emission Spectrum for Hydrogen

Visible Balmer Series: frequency J.J. Balmer (1885): $\frac{1}{\lambda_n} = -109700 \text{ cm}^{-1} \left(\frac{1}{n^2} - \frac{1}{2^2} \right)$ n = 3, 4, 5...

Discharge Lamp

General empirical result:

$$E_{photon} = hf = \frac{hc}{\lambda} = E_i - E_f = -13.6 \text{ eV} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2}\right) \frac{n_i = 2, 3, 4...}{n_f = 1, 2, 3, ... < n_i}$$

Energy Levels of the Hydrogen Atom

$$E_{\rm hydrogen,\,n} = -13.6\,{\rm eV}\,\frac{1}{n^2}$$

⇒ Energy levels of atoms are quantized!

n = 1, 2, 3...

⇒ Particles confined to small volume have quantized energies!

- ⇒ All atoms and molecules have characteristic (unique) energy level structures.
- ⇒ Atoms have characteristic (unique) line spectra in the gas phase.
- ⇒ Emission or absorption spectra can be used to check for the presence of certain atoms in a gas
 - ⇒ Example: Absorption lines in the sun's continuous spectrum

Dark lines in the solar spectrum are caused by absorption by chemical elements in the Solar atmosphere.

Stellar Classification

Class	Surface temperature ^[8] (kelvins)	Conventional color	Apparent color ^{[9][10][11]}	Mass ^[8] (solar masses)	Radius ^[8] (solar radii)	Luminosity ^[8] (bolometric)	Hydrogen lines	Fraction of all main-sequence stars ^[12]
0	≥ 33,000 K	blue	blue	≥ 16 M _☉	≥ 6.6 <mark>R</mark> ₀	≥ 30,000 L _☉	Weak	~0.00003%
В	10,000–33,000 K	blue to blue white	blue white	2.1–16 M ₀	1.8–6.6 R₀	25–30,000 L₀	Medium	0.13%
Α	7,500–10,000 K	white	white to blue white	1.4–2.1 M ₀	1.4–1.8 R₀	5–25 L₀	Strong	0.6%
F	6,000–7,500 K	yellowish white	white	1.04–1.4 M $_{\odot}$	1.15–1.4 R₀	1.5–5 L _☉	Medium	3%
G	5,200–6,000 K	yellow	yellowish white	0.8–1.04 <mark>M</mark> ₀	0.96–1.15 R₀	0.6–1.5 L _☉	Weak	7.6%
K	3,700–5,200 K	orange	yellow orange	0.45–0.8 <mark>M</mark> ₀	0.7–0.96 R ₀	0.08–0.6 L _☉	Very weak	12.1%
М	≤ 3,700 K	red	orange red	≤ 0.45 <mark>M</mark> ₀	≤ 0.7 <mark>R</mark> ₀	≤ 0.08 L _☉	Very weak	76.45%